Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On nonlinear fractional Klein-Gordon equation

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Numerical methods are used to find exact solution for the nonlinear differential equations. In the last decades Iterative methods have been used for solving fractional differential equations. In this paper, the Homotopy perturbation method has been successively applied for finding approximate analytical solutions of the fractional nonlinear Klein-Cordon equation can be used as numerical algorithm. The behavior of solutions and the effects of different values of fractional order a are shown graphically. Some examples are given to show ability of the method for solving the fractional nonlinear equation. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Description

Alireza/0000-0002-3490-7976; Khalili Golmankhaneh, Alireza/0000-0003-1529-7807; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163

Keywords

Caputo Fractional Derivative, Fractional Klein Gordon, Homotopy Perturbation Method, Numerical Algorithm, Iteration Method

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D. (2011). On nonlinear fractional Klein-Gordon equation. Signal Processing, 91(3), 446-451. http://dx.doi.org/10.1016/j.sigpro.2010.04.016

WoS Q

Q2

Scopus Q

Q1

Source

Volume

91

Issue

3

Start Page

446

End Page

451