Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Extended Fractional Caputo-Fabrizio Derivative of Order 0 ≤ Σ < 1 on Cr[0,1] and the Existence of Solutions for Two Higher-Order Series-Type Differential Equations

dc.contributor.author Mousalou, Asef
dc.contributor.author Rezapour, Shahram
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2023-02-07T12:40:18Z
dc.date.accessioned 2025-09-18T14:10:37Z
dc.date.available 2023-02-07T12:40:18Z
dc.date.available 2025-09-18T14:10:37Z
dc.date.issued 2018
dc.description.abstract We extend the fractional Caputo-Fabrizio derivative of order 0 <= sigma < 1 on C-R[0,1] and investigate two higher-order series-type fractional differential equations involving the extended derivation. Also, we provide an example to illustrate one of the main results. en_US
dc.description.publishedMonth 7
dc.description.sponsorship Azarbaijan Shahid Madani University en_US
dc.description.sponsorship The second and third authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to the referees for their helpful suggestions, which improved the final version of this paper. en_US
dc.identifier.citation Baleanu, Dumitru; Mousalou, Asef; Rezapour, Shahram (2018). "The extended fractional Caputo-Fabrizio derivative of order 0 <= sigma < 1 on C-R[0,1] and the existence of solutions for two higher-order series-type differential equations", Advances in Difference Equations. en_US
dc.identifier.doi 10.1186/s13662-018-1696-6
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85050550443
dc.identifier.uri https://doi.org/10.1186/s13662-018-1696-6
dc.identifier.uri https://hdl.handle.net/20.500.12416/13745
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject The Extended Caputo-Fabrizio Derivative Of Order 0 <= Sigma < 1 en_US
dc.subject Higher-Order Fractional Differential Equation en_US
dc.subject Series-Type Equation en_US
dc.title The Extended Fractional Caputo-Fabrizio Derivative of Order 0 ≤ Σ < 1 on Cr[0,1] and the Existence of Solutions for Two Higher-Order Series-Type Differential Equations en_US
dc.title The extended fractional Caputo-Fabrizio derivative of order 0 <= sigma < 1 on C-R[0,1] and the existence of solutions for two higher-order series-type differential equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 57193242670
gdc.author.scopusid 55935081600
gdc.author.wosid Rezapour, Shahram/N-4883-2016
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Mousalou, Asef; Rezapour, Shahram] Azarbaijan Shah Madani Univ, Dept Math, Tabriz, Iran; [Rezapour, Shahram] China Med Univ Hosp, China Med Univ, Dept Med Res, Taichung, Taiwan en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2884403648
gdc.identifier.wos WOS:000439948000005
gdc.openalex.fwci 8.74242158
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 64
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 74
gdc.scopus.citedcount 74
gdc.wos.citedcount 66
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files