Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Ranking using PROMETHEE when weights and thresholds are imprecise: a data envelopment analysis approach

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Endüstri Mühendisliği
Bölümümüzün temel amacı farklı sektörlerde faaliyet gösteren değişik ölçeklerdeki işletme ve kurumların problemlerini bilimsel araştırma yöntemleri ve sistem yaklaşımıyla analiz ve sentezleme, insan ve çevreyi de göz önüne alan modeller kurarak, kaynakları toplum yararına verimli kullanan sürdürülebilir çözümler üretme ve karar verme bilgi ve becerileri kazandırılmış, teknolojiyi etkin kullanan, disiplinlerarası takımlarda çalışmaya yatkın endüstri mühendisleri yetiştirmek, ileri düzeyde araştırmalarla bilime ve ulusal kalkınmaya katkı sağlamaktır.

Journal Issue

Events

Abstract

Multicriteria decision making (MCDM) provides tools for the decision makers (DM) to solve complex problems with multiple conflicting criteria. Scalarization of criteria values requires using weights for criteria. Determining weights creates controversy as they are influential on the final ranking and challenges the DM as they are hard to elicit. PROMETHEE method is widely used in MCDM for ranking the alternatives and appropriate in situations when there is limited information on the preference structure of the DM. The DM should provide exact values for parameters such as criteria weights and thresholds of preference functions. Data Envelopment Analysis (DEA) is used for measuring the relative efficiency of alternatives in a non-parametric way without requiring any weight input. In this study, we propose two novel PROMETHEE based ranking approaches that address the determination of weight and threshold values by using an approach inspired by DEA. The first approach can deal with imprecise specification of criteria weights, and the second approach can utilize both imprecise weights and thresholds. The proposed approaches provide the DM substantial flexibility on the required level of information on those parameters. An illustrative example and a real-life case study are presented to show the utility of the proposed approaches.

Description

Karasakal, Orhan/0000-0003-0320-487X

Keywords

Multicriteria, Data Envelopment Analysis, Promethee, Decision Support Systems

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Karasakal, Esra; Eryılmaz, Utkan; Karasakal, Orhan (2022). "Ranking using PROMETHEE when weights and thresholds are imprecise: a data envelopment analysis approach", Journal of the Operational Research Society, Vol. 73, No. 9, pp. 1978-1995.

WoS Q

Q2

Scopus Q

Q1

Source

Volume

73

Issue

9

Start Page

1978

End Page

1995