Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Improving the Performance of a Mems-Imu System Based on a False State-Space Model by Using a Fading Factor Adaptive Kalman Filter

dc.contributor.author Akbas, Eren Mehmet
dc.contributor.author Cifdaloz, Oguzhan
dc.contributor.author Ucuncu, Murat
dc.date.accessioned 2025-05-11T17:05:41Z
dc.date.available 2025-05-11T17:05:41Z
dc.date.issued 2024
dc.description Ucuncu, Murat/0000-0002-2113-1398 en_US
dc.description.abstract In this study, we introduce a novel algorithm, the low error rate adaptive fading Kalman filter (LERAFKF), designed to predict system states in the presence of uncertainty in both the system matrix and the model. The purpose of developing the LERAFKF is to address challenges arising from measurement difficulties, system parameter uncertainties, and state-space model inaccuracies. Several studies have utilized the Kalman filter (KF) and extended Kalman filter (EKF) algorithms to handle uncertainties in system parameters, corrupted measurements with unknown covariances, and incorrectly defined system modeling. Our work distinguishes itself by proposing a new approach that achieves lower error and deviation rates by combining the current Kalman estimation algorithm and the fading factor adaptive filter. To achieve this goal, we transformed the KF into an adaptive KF by introducing a forgetting factor, and the algorithm was subsequently reconfigured to calculate an optimized forgetting factor. In this study, we conducted simulations and measurements using both linear and nonlinear systems. The linear system represents the motion of an object, and the simulation involved measurements from the inertial navigation system (INS) sensor, specifically the Pololu IMU01b three-axis inertial measurement unit (IMU) sensor. We employed the SDI33 system with 9 degrees of freedom (DoF) mounted on a three-axis rotary table for the nonlinear system. This system simulates a missile as a 4th-order nonlinear system. Our findings demonstrate that the proposed LERAFKF filter outperforms KF and EKF in estimating system states, particularly in measurement-related error scenarios. Mean square error analysis further confirmed that LERAFKF exhibited the lowest error values, showcasing superior performance over KF and EKF in linear and nonlinear systems. en_US
dc.identifier.doi 10.1177/00202940241258481
dc.identifier.issn 0020-2940
dc.identifier.issn 2051-8730
dc.identifier.scopus 2-s2.0-85196628505
dc.identifier.uri https://doi.org/10.1177/00202940241258481
dc.identifier.uri https://hdl.handle.net/20.500.12416/9653
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.ispartof Measurement and Control
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject State-Space Model en_US
dc.subject Adaptive Kalman Filter en_US
dc.subject Low Error Rate Adaptive Fading Kalman Filter en_US
dc.title Improving the Performance of a Mems-Imu System Based on a False State-Space Model by Using a Fading Factor Adaptive Kalman Filter en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ucuncu, Murat/0000-0002-2113-1398
gdc.author.scopusid 59183351900
gdc.author.scopusid 6508048390
gdc.author.scopusid 57215422955
gdc.author.wosid Cifdaloz, Oguzhan/F-5301-2018
gdc.author.wosid Üçüncü, Murat/Kdo-6837-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Akbas, Eren Mehmet] Sci & Technol Res Council Turkey, TUBITAK, Ankara, Turkiye; [Cifdaloz, Oguzhan] Cankaya Univ, Dept Elect & Elect Engn, Ankara, Turkiye; [Ucuncu, Murat] Baskent Univ, Dept Elect & Elect Engn, Baglica Kampusu, TR-06810 Ankara, Turkiye en_US
gdc.description.endpage 1251 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1243 en_US
gdc.description.volume 57 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4399862088
gdc.identifier.wos WOS:001251396700001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7108114E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Control engineering systems. Automatic machinery (General)
gdc.oaire.keywords TJ212-225
gdc.oaire.keywords T1-995
gdc.oaire.keywords Technology (General)
gdc.oaire.popularity 4.6697997E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.95731842
gdc.openalex.normalizedpercentile 0.89
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 1
gdc.plumx.newscount 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files