Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Characterization of Micro-Wire Electrical Discharge Machining Surface Texture by Empirical Mode Decomposition

dc.contributor.author Morovatdel, Mehrdad
dc.contributor.author Osguei, Amin Taraghi
dc.contributor.author Ustunel, Yasar Can
dc.contributor.author Oliaei, Samad Nadimi Bavil
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-11T17:03:13Z
dc.date.available 2025-05-11T17:03:13Z
dc.date.issued 2025
dc.description.abstract Surface roughness is a critical factor for the operational efficacy and lifespan of the manufactured components, often serving as a key metric for evaluating manufacturing processes and determining acceptance of a component. Traditional surface roughness measurements are highly sensitive to the fixed standard cut-off length, influencing the scale at which surface texture features are analyzed. Thus, developing techniques with more reliable filtering of surface features is essential for accurate surface metrology. This research proposes a novel method that combines Empirical Mode Decomposition (EMD) and Fast Fourier Transform (FFT) for surface roughness characterization. We applied our method to Nitinol shape memory alloy (equal atomic proportions of nickel and titanium) surfaces processed using micro-Wire Electrical Discharge Machining (mu-WEDM). Our results demonstrate that the EMD-FFT method significantly outperforms traditional filtering, especially for surfaces without distinct patterns like mu-WEDM. This improvement is particularly valuable for materials like Nitinol, which is widely used in critical applications where precise surface roughness control is essential. By accurately assessing the effects of mu-WEDM parameters on surface roughness, the proposed method reveals that for a constant pulse on time and a constant discharge current, the variation of pulse off time is more important than servo voltage. Thus, this method can contribute to optimizing manufacturing processes and producing higherquality components with improved performance and durability. en_US
dc.identifier.doi 10.1016/j.measurement.2024.116184
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-85210287780
dc.identifier.uri https://doi.org/10.1016/j.measurement.2024.116184
dc.identifier.uri https://hdl.handle.net/20.500.12416/9584
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Empirical Mode Decomposition en_US
dc.subject Surface Roughness en_US
dc.subject Electrical Discharge Machining en_US
dc.subject Gaussian Filtering en_US
dc.title Characterization of Micro-Wire Electrical Discharge Machining Surface Texture by Empirical Mode Decomposition en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59426597800
gdc.author.scopusid 57762993900
gdc.author.scopusid 59426699900
gdc.author.scopusid 59426215200
gdc.author.wosid Oliaei, Samad/O-2762-2018
gdc.author.wosid Osguei, Amin/Aas-1228-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Morovatdel, Mehrdad; Osguei, Amin Taraghi] Sahand Univ Technol, Fac Mech Engn, Tabriz, Iran; [Ustunel, Yasar Can; Oliaei, Samad Nadimi Bavil] Cankaya Univ, Dept Mech Engn, TR-06790 Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 242 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4404212811
gdc.identifier.wos WOS:001370789900001
gdc.openalex.fwci 0.73833695
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files