Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations

dc.authorid Jafari, Hossein/0000-0001-6807-6675
dc.authorscopusid 26642881400
dc.authorscopusid 56020904800
dc.authorscopusid 57045880100
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Jafari, Hossein/E-9912-2016
dc.authorwosid Jassim, Hassan/X-7743-2019
dc.contributor.author Jafari, Hossein
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jassim, Hassan Kamil
dc.contributor.author Al Qurashi, Maysaa
dc.contributor.author Baleanu, Dumitru
dc.contributor.other Matematik
dc.date.accessioned 2018-09-27T08:19:02Z
dc.date.available 2018-09-27T08:19:02Z
dc.date.issued 2016
dc.department Çankaya University en_US
dc.department-temp [Jafari, Hossein] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar 47416, Iran; [Jafari, Hossein] Univ South Africa UNISA, Dept Math Sci, ZA-0003 Pretoria, South Africa; [Jassim, Hassan Kamil] Univ Thi Qar, Fac Educ Pure Sci, Dept Math, Nasiriyah 64001, Iraq; [Al Qurashi, Maysaa] King Saud Univ, Dept Math, PO B22452, Riyadh 11495, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-76911 Magurele, Romania en_US
dc.description Jafari, Hossein/0000-0001-6807-6675 en_US
dc.description.abstract In this manuscript, we prove the existence and uniqueness of solutions for local fractional differential equations (LFDEs) with local fractional derivative operators (LFDOs). By using the contracting mapping theorem (CMT) and increasing and decreasing theorem (IDT), existence and uniqueness results are obtained. Some examples are presented to illustrate the validity of our results. en_US
dc.description.publishedMonth 11
dc.description.sponsorship International Scientific Partnership Program ISPP at King Saud University through ISPP [63] en_US
dc.description.sponsorship The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 63. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, D...[et.al.]. (2016). On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy, 18(11). http://dx.doi.org/10.3390/e18110420 en_US
dc.identifier.doi 10.3390/e18110420
dc.identifier.issn 1099-4300
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85022195076
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/e18110420
dc.identifier.volume 18 en_US
dc.identifier.wos WOS:000390101200036
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 31
dc.subject Existence And Uniqueness Solutions en_US
dc.subject Local Fractional Differential Equations en_US
dc.subject Contracting Mapping Theorem en_US
dc.subject Local Fractional Operators en_US
dc.title On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations tr_TR
dc.title On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 14
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
228.64 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: