Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fractional Renyi Entropy Image Enhancement for Deep Segmentation of Kidney Mri

dc.contributor.author Al-Shamasneh, Ala'a R.
dc.contributor.author Shaiba, Hadil
dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jalab, Hamid A.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-04-29T12:58:01Z
dc.date.accessioned 2025-09-18T12:10:25Z
dc.date.available 2022-04-29T12:58:01Z
dc.date.available 2025-09-18T12:10:25Z
dc.date.issued 2021
dc.description Shaiba, Hadil/0000-0003-1652-6579 en_US
dc.description.abstract Recently, many rapid developments in digital medical imaging have made further contributions to health care systems. The segmentation of regions of interest in medical images plays a vital role in assisting doctors with their medical diagnoses. Many factors like image contrast and quality affect the result of image segmentation. Due to that, image contrast remains a challenging problem for image segmentation. This study presents a new image enhancement model based on fractional Renyi entropy for the segmentation of kidney MRI scans. The proposed work consists of two stages: enhancement by fractional Renyi entropy, and MRI Kidney deep segmentation. The proposed enhancement model exploits the pixel's probability representations for image enhancement. Since fractional Renyi entropy involves fractional calculus that has the ability to model the non-linear complexity problem to preserve the spatial relationship between pixels, yielding an overall better details of the kidney MRI scans. In the second stage, the deep learning kidney segmentation model is designed to segment kidney regions in MRI scans. The experimental results showed an average of 95.60% dice similarity index coefficient, which indicates best overlap between the segmented bodies with the ground truth. It is therefore concluded that the proposed enhancement model is suitable and effective for improving the kidney segmentation performance. en_US
dc.description.sponsorship deanship of scientific research at princess Nourah bint Abdulrahman University en_US
dc.description.sponsorship This research was funded by the deanship of scientific research at princess Nourah bint Abdulrahman University through the fast-track research-funding program. en_US
dc.identifier.citation Jalab, Hamid A...et al. (2021). "Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI", Computers, Materials and Continua, Vol. 67, no. 2, pp. 2061-2075. en_US
dc.identifier.doi 10.32604/cmc.2021.015170
dc.identifier.issn 1546-2218
dc.identifier.issn 1546-2226
dc.identifier.scopus 2-s2.0-85102529695
dc.identifier.uri https://doi.org/10.32604/cmc.2021.015170
dc.identifier.uri https://hdl.handle.net/123456789/11726
dc.language.iso en en_US
dc.publisher Tech Science Press en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Calculus en_US
dc.subject Renyi Entropy en_US
dc.subject Convolution Neural Networks en_US
dc.subject Mri Kidney Segmentation en_US
dc.title Fractional Renyi Entropy Image Enhancement for Deep Segmentation of Kidney Mri en_US
dc.title Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Shaiba, Hadil/0000-0003-1652-6579
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 36179737700
gdc.author.scopusid 57204916510
gdc.author.scopusid 57203919884
gdc.author.scopusid 16319225300
gdc.author.scopusid 7005872966
gdc.author.wosid Jalab, Hamid/B-5285-2010
gdc.author.wosid Ibrahim, Rabha/D-3312-2017
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Shaiba, Hadil/Hkn-8342-2023
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Jalab, Hamid A.; Al-Shamasneh, Ala'a R.] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia; [Shaiba, Hadil] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 84428, Saudi Arabia; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City 758307, Vietnam; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 758307, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 2075 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2061 en_US
gdc.description.volume 67 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3129523111
gdc.identifier.wos WOS:000616713000009
gdc.openalex.fwci 0.81775583
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 6
gdc.plumx.crossrefcites 7
gdc.plumx.facebookshareslikecount 64
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 10
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files