Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bezier curves

dc.authorid Doha, Eid/0000-0002-7781-6871
dc.authorid Saker, Mohamed/0000-0002-3496-0814
dc.authorscopusid 14319102000
dc.authorscopusid 6602467804
dc.authorscopusid 36698189000
dc.authorscopusid 7005872966
dc.authorwosid Doha, Eid/L-1723-2019
dc.authorwosid Bhrawy, Ali/D-4745-2012
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Bhrawy, A. H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Doha, E. H.
dc.contributor.author Saker, M. A.
dc.contributor.author Baleanu, D.
dc.contributor.other Matematik
dc.date.accessioned 2017-04-24T08:24:03Z
dc.date.available 2017-04-24T08:24:03Z
dc.date.issued 2016
dc.department Çankaya University en_US
dc.department-temp [Bhrawy, A. H.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Doha, E. H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Saker, M. A.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
dc.description Doha, Eid/0000-0002-7781-6871; Saker, Mohamed/0000-0002-3496-0814 en_US
dc.description.abstract This paper reports new modified Jacobi polynomials (MJPs). We derive the basis transformation between MJPs and Bernstein polynomials and vice versa. This transformation is merging the perfect Least-square performance of the new polynomials together with the geometrical insight of Bernstein polynomials. The MJPs with indexes corresponding to the number of endpoints constraints are the natural basis functions for Least-square approximation of Bezier curves. Using MJPs leads us to deal with the constrained Jacobi polynomials and the unconstrained Jacobi polynomials as orthogonal polynomials. The MJPs are automatically satisfying the homogeneous boundary conditions. Thereby, the main advantage of using MJPs, in multi-degree reduction of Bezier curves on computer aided geometric design (CAGD), is that the constraints in CAGD are also satisfied and that decreases the steps of multi-degree reduction algorithm. Several numerical results for the multi-degree reduction of Bezier curves on CAGD are given. (C) 2016 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 8
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Bhrawy, A.H...et al. (2016). Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bezier curves. Journal of Computational and Applied Mathematics, 302, 369-384. http://dx.doi.org/10.1016/j.cam.2016.01.009 en_US
dc.identifier.doi 10.1016/j.cam.2016.01.009
dc.identifier.endpage 384 en_US
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-84960459852
dc.identifier.scopusquality Q1
dc.identifier.startpage 369 en_US
dc.identifier.uri https://doi.org/10.1016/j.cam.2016.01.009
dc.identifier.volume 302 en_US
dc.identifier.wos WOS:000374601100027
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 6
dc.subject Basis Transformation en_US
dc.subject Modified Jacobi Polynomials en_US
dc.subject Bernstein Polynomials en_US
dc.subject Galerkin Orthogonal Polynomials en_US
dc.subject Multiple Degree Reduction Of Bezier Curves en_US
dc.title Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bezier curves tr_TR
dc.title Modified Jacobi-Bernstein Basis Transformation and Its Application To Multi-Degree Reduction of Bezier Curves en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: