Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Machine Learning Study to Enhance Project Cost Forecasting

dc.authorid Inan, Tolga/0000-0002-8612-122X
dc.authorid Hazir, Oncu/0000-0003-0183-8772
dc.authorscopusid 25651564000
dc.authorscopusid 55980874500
dc.authorscopusid 23034277700
dc.authorwosid Inan, Tolga/F-5632-2018
dc.authorwosid Narbaev, Timur/F-4948-2015
dc.authorwosid Hazir, Oncu/C-8920-2013
dc.authorwosid Inan, Tolga/Aac-9776-2019
dc.contributor.author Inan, Tolga
dc.contributor.author İnan, Tolga
dc.contributor.author Narbaev, Timur
dc.contributor.author Hazir, Oncu
dc.contributor.other Elektrik-Elektronik Mühendisliği
dc.date.accessioned 2024-03-05T13:01:07Z
dc.date.available 2024-03-05T13:01:07Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Inan, Tolga] Cankaya Univ, Elect Elect Engn Dept, Ankara, Turkey; [Narbaev, Timur] Kazakh British Tech Univ, Business Sch, Alma Ata, Kazakhstan; [Hazir, Oncu] Rennes Sch Business, Supply Chain Management & Informat Syst Dept, Rennes, France en_US
dc.description Inan, Tolga/0000-0002-8612-122X; Hazir, Oncu/0000-0003-0183-8772 en_US
dc.description.abstract In project management it is critical to obtain accurate cost forecasts using effective methods. This study presents a Machine Learning model based on Long-Short Term Memory to forecast the project cost. The model uses the seven-dimensional feature vector, including schedule and cost performance factors and their moving averages as a predictor. Based on the cost variation patterns from the training phase, we validate the model using three hundred experiments in the testing phase. Overall, the proposed model produces more accurate cost estimates when compared to the traditional Earned Value Management index-based model. Copyright (C) 2022 The Authors. en_US
dc.description.sponsorship Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan [AP09259049] en_US
dc.description.sponsorship This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09259049). en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citation İnan, Tolga; Narbaev, Timur; Hazır, Öncü (2022). "A Machine Learning Study to Enhance Project Cost Forecasting", IFAC-PapersOnLine, Vol. 55, No. 10, pp. 3286-3291. en_US
dc.identifier.doi 10.1016/j.ifacol.2022.10.127
dc.identifier.endpage 3291 en_US
dc.identifier.issn 2405-8963
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-85144487483
dc.identifier.scopusquality Q3
dc.identifier.startpage 3286 en_US
dc.identifier.uri https://doi.org/10.1016/j.ifacol.2022.10.127
dc.identifier.volume 55 en_US
dc.identifier.wos WOS:000881681700499
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof 10th IFAC Triennial Conference on Manufacturing Modelling, Management and Control (MIM) -- JUN 22-24, 2022 -- Nantes, FRANCE en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 14
dc.subject Cost Forecasting en_US
dc.subject Earned Value Management en_US
dc.subject Estimate At Completion en_US
dc.subject Machine Learning en_US
dc.subject Project Management en_US
dc.title A Machine Learning Study to Enhance Project Cost Forecasting tr_TR
dc.title A Machine Learning Study To Enhance Project Cost Forecasting en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication 1a8a8cca-bb6f-45e7-a513-2cb70c908c96
relation.isAuthorOfPublication.latestForDiscovery 1a8a8cca-bb6f-45e7-a513-2cb70c908c96
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication.latestForDiscovery a8b0a996-7c01-41a1-85be-843ba585ef45

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: