Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Stability and bifurcation analyses of a discrete Lotka–Volterra type predator–prey system with refuge effect

dc.authorscopusid 57953386000
dc.authorscopusid 57219806712
dc.authorscopusid 6508264521
dc.authorwosid Bilazeroğlu, Şeyma/Aaw-4918-2021
dc.contributor.author Yildiz, Sevval
dc.contributor.author Bilazeroğlu, Şeyma
dc.contributor.author Bilazeroglu, Seyma
dc.contributor.author Merdan, Huseyin
dc.contributor.authorID 49206 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-01-26T07:55:03Z
dc.date.available 2024-01-26T07:55:03Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Yildiz, Sevval; Merdan, Huseyin] TOBB Univ Econ & Technol, Dept Math, Ankara, Turkiye; [Bilazeroglu, Seyma] Cankaya Univ, Dept Math, Ankara, Turkiye en_US
dc.description.abstract In this paper, we discuss the complex dynamical behavior of a discrete Lotka-Volterra type predator-prey model including refuge effect. The model considered is obtained from a continuous-time population model by utilizing the forward Euler method. First of all, we nondimensionalize the system to continue the analysis with fewer parameters. And then, we determine the fixed points of the dimensionless system. We investigate the dynamical behavior of the system by performing the local stability analysis for each fixed point, separately. Moreover, we analytically show the existence of flip and Neimark-Sacker bifurcations at the positive fixed point by applying the normal form theory and the center manifold theorem. Bifurcation analyses are carried out by choosing the integral step size as a bifurcation parameter. In addition, we perform numerical simulations to support and extend the analytical results. All these analyses have been done for the models with and without the refuge effect to examine the effect of refuge on the dynamics. We have concluded that the refuge has significant role on the dynamical behavior of a discrete system. Furthermore, numerical simulations underline that the large integral step size causes the chaotic behavior. (c) 2022 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Yıldız, Ş.; Biazeroğlu, Ş.; Merdan, H. (2023). "Stability and bifurcation analyses of a discrete Lotka–Volterra type predator–prey system with refuge effect", Journal of Computational and Applied Mathematics, Vol.422. en_US
dc.identifier.doi 10.1016/j.cam.2022.114910
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-85141272297
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.cam.2022.114910
dc.identifier.volume 422 en_US
dc.identifier.wos WOS:000918268300007
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 13
dc.subject Lotka-Volterra Type Predator-Prey System en_US
dc.subject Refuge Effect en_US
dc.subject Stability Analysis en_US
dc.subject Flip Bifurcation en_US
dc.subject Neimark-Sacker Bifurcation en_US
dc.title Stability and bifurcation analyses of a discrete Lotka–Volterra type predator–prey system with refuge effect tr_TR
dc.title Stability and Bifurcation Analyses of a Discrete Lotka-Volterra Type Predator-Prey System With Refuge Effect en_US
dc.type Article en_US
dc.wos.citedbyCount 12
dspace.entity.type Publication
relation.isAuthorOfPublication 6c35bceb-f7aa-45a3-b576-4ea8ff29a057
relation.isAuthorOfPublication.latestForDiscovery 6c35bceb-f7aa-45a3-b576-4ea8ff29a057
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: