Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New Aspects of the Motion of A Particle In A Circular Cavity

dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorscopusid 7005872966
dc.authorscopusid 8898843900
dc.authorscopusid 34880044900
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Jajarmi, Amin/O-7701-2019
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Asad, Jihad H.
dc.contributor.author Jajarmi, Amin
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-03-31T07:25:47Z
dc.date.available 2020-03-31T07:25:47Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, Bucharest 76900, Romania; [Asad, Jihad H.] Palestine Tech Univ, Coll Arts & Sci, Dept Phys, POB 7, Tulkarm, Palestine; [Jajarmi, Amin] Univ Bojnord, Dept Elect Engn, POB 94531-1339, Bojnord, Iran en_US
dc.description Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract In this work, we consider the free motion of a particle in a circular cavity. For this model, we obtain the classical and fractional Lagrangian as well as the fractional Hamilton's equations (FHEs) of motion. The fractional equations are formulated in the sense of Caputo and a new fractional derivative with Mittag-Leffler nonsingular kernel. Numerical simulations of the FHEs within these two fractional operators are presented and discussed for some fractional derivative orders. Numerical results are based on a discretization scheme using the Euler convolution quadrature rule for the discretization of the convolution integral. Simulation results show that the fractional calculus provides more flexible models demonstrating new aspects of the real-world phenomena. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Asad, Jihad H.; Jajarmi, Amin, "New Aspects of the Motion of A Particle In A Circular Cavity", Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, Vol. 9, No. 2, pp. 361-367, (2018) en_US
dc.identifier.endpage 367 en_US
dc.identifier.issn 1454-9069
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85048672937
dc.identifier.scopusquality Q4
dc.identifier.startpage 361 en_US
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:000439870900007
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 66
dc.subject Fractional Calculus en_US
dc.subject Caputo Derivative en_US
dc.subject Mittag-Leffler Kernel en_US
dc.subject Particle en_US
dc.subject Circular Cavity en_US
dc.subject Euler Method en_US
dc.title New Aspects of the Motion of A Particle In A Circular Cavity tr_TR
dc.title New Aspects of the Motion of a Particle in a Circular Cavity en_US
dc.type Article en_US
dc.wos.citedbyCount 59
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: