Fractional Bloch equation with delay
No Thumbnail Available
Date
2011
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Science Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this paper we investigate a fractional generalization of the Bloch equation that includes both fractional derivatives and time delays. The appearance of the fractional derivative on the left side of the Bloch equation encodes a degree of system memory in the dynamic model for magnetization. The introduction of a time delay on the right side of the equation balances the equation by also adding a degree of system memory on the right side of the equation. The analysis of this system shows different stability behavior for the T(1) and the T(2) relaxation processes. The T(1) decay is stable for the range of delays tested (1-100 mu s), while the T(2) relaxation in this model exhibited a critical delay (typically 6 mu s) above which the system was unstable. Delays are expected to appear in NMR systems, in both the system model and in the signal excitation and detection processes. Therefore, by including both the fractional derivative and finite time delays in the Bloch equation, we believe that we have established a more complete and more realistic model for NMR resonance and relaxation
Description
Keywords
Fractional Calculus, Bloch Equation, Delay
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Bhalekar, S...et al. (2011). Fractional Bloch equation with delay. Computers&Mathematics With Applications, 61(5), 1355-1365. http://dx.doi.org/ 10.1016/j.camwa.2010.12.079
WoS Q
Scopus Q
Source
Computers&Mathematics With Applications
Volume
61
Issue
5
Start Page
1355
End Page
1365