Travelling Wave Solutions: A New Approach To The Analysis of Nonlinear Physical Phenomena
dc.authorscopusid | 24465653900 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 54882498200 | |
dc.authorwosid | Fardi, Mojtaba/Aaz-4739-2021 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Sayevand, Khosro | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Fardi, Mojtaba | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-05-11T13:31:17Z | |
dc.date.available | 2020-05-11T13:31:17Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Sayevand, Khosro] Univ Malayer, Fac Basic Sci, Dept Math, Malayer, Iran; [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Fardi, Mojtaba] Islamic Azad Univ, Najafabad Branch, Dept Math, Najafabad, Iran | en_US |
dc.description.abstract | In this manuscript, a reliable scheme based on a general functional transformation is applied to construct the exact travelling wave solution for nonlinear differential equations. Our methodology is investigated by means of the modified homotopy analysis method which contains two convergence-control parameters. The obtained results reveal that the proposed approach is a very effective. Several illustrative examples are investigated in detail. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.2478/s11534-014-0475-6 | |
dc.identifier.endpage | 489 | en_US |
dc.identifier.issn | 1895-1082 | |
dc.identifier.issn | 1644-3608 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-84902991701 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 480 | en_US |
dc.identifier.uri | https://doi.org/10.2478/s11534-014-0475-6 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000338276100005 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | de Gruyter Poland Sp Z O O | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 3 | |
dc.subject | Biparametric | en_US |
dc.subject | Homotopy | en_US |
dc.subject | Series Solution | en_US |
dc.subject | Convergence | en_US |
dc.subject | Nonlinear Differential Equation | en_US |
dc.title | Travelling Wave Solutions: A New Approach To The Analysis of Nonlinear Physical Phenomena | tr_TR |
dc.title | Travelling Wave Solutions: a New Approach To the Analysis of Nonlinear Physical Phenomena | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 2 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |