Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative

dc.authorscopusid 7005872966
dc.authorscopusid 7003657106
dc.authorscopusid 6602156175
dc.authorwosid Muslih, Sami/Aaf-4974-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Muslih, Sami I.
dc.contributor.author Rabei, Eqab M.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-03T21:31:45Z
dc.date.available 2020-04-03T21:31:45Z
dc.date.issued 2008
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Muslih, Sami I.] Al Azhar Univ, Dept Phys, Gaza, Israel; [Muslih, Sami I.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy; [Rabei, Eqab M.] Jerash Private Univ, Dept Sci, Jerash, Jordan; [Rabei, Eqab M.] Mutah Univ, Dept Phys, Al Karak, Jordan en_US
dc.description.abstract Fractional mechanics describe both conservative and nonconservative systems. The fractional variational principles gained importance in studying the fractional mechanics and several versions are proposed. In classical mechanics, the equivalent Lagrangians play an important role because they admit the same Euler-Lagrange equations. By adding a total time derivative of a suitable function to a given classical Lagrangian or by multiplying with a constant, the Lagrangian we obtain are the same equations of motion. In this study, the fractional discrete Lagrangians which differs by a fractional derivative are analyzed within Riemann-Liouville fractional derivatives. As a consequence of applying this procedure, the classical results are reobtained as a special case. The fractional generalization of Faa di Bruno formula is used in order to obtain the concrete expression of the fractional Lagrangians which differs from a given fractional Lagrangian by adding a fractional derivative. The fractional Euler-Lagrange and Hamilton equations corresponding to the obtained fractional Lagrangians are investigated, and two examples are analyzed in detail. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Muslih, Sami I.; Rabei, Eqab M., "On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative", Nonlinear Dynamics, Vol.53, No.1-2, pp.67-74, (2008). en_US
dc.identifier.doi 10.1007/s11071-007-9296-0
dc.identifier.endpage 74 en_US
dc.identifier.issn 0924-090X
dc.identifier.issn 1573-269X
dc.identifier.issue 1-2 en_US
dc.identifier.scopus 2-s2.0-44649172155
dc.identifier.scopusquality Q1
dc.identifier.startpage 67 en_US
dc.identifier.uri https://doi.org/10.1007/s11071-007-9296-0
dc.identifier.volume 53 en_US
dc.identifier.wos WOS:000256434900007
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 97
dc.subject Fractional Lagrangians en_US
dc.subject Fractional Calculus en_US
dc.subject Fractional Riemann-Liouville Derivative en_US
dc.subject Fractional Euler-Lagrange Equations en_US
dc.subject Faa Di Bruno Formula en_US
dc.title On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative tr_TR
dc.title On Fractional Euler-Lagrange and Hamilton Equations and the Fractional Generalization of Total Time Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 88
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: