Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A comprehensive analysis of the stochastic fractal–fractional tuberculosis model via Mittag-Leffler kernel and white noise

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this research, we develop a stochastic framework for analysing tuberculosis (TB) evolution that includes new-born immunization via the fractal-fractional (F-F) derivative in the Atangana-Baleanu sense. The population is divided into four groups by this system: susceptibility S(xi), infectious I(xi), immunized infants V(xi), and restored R(xi). The stochastic technique is used to describe and assess the invariant region, basic reproduction number, and local stability for disease-free equilibrium. This strategy has significant modelling difficulties since it ignores the unpredictability of the system phenomena. To prevent such problems, we convert the deterministic strategy to a randomized one, which seems recognized to have a vital influence by adding an element of authenticity and fractional approach. Owing to the model intricacies, we established the existence-uniqueness of the model and the extinction of infection was carried out. We conducted a number of experimental tests using the F-F derivative approach and obtained some intriguing modelling findings in terms of (i) varying fractional-order (phi) and fixing fractal-dimension (omega), (ii) varying omega and fixing phi, and (iii) varying both phi and omega, indicating that a combination of such a scheme can enhance infant vaccination and adequate intervention of infectious patients can give a significant boost.

Description

Iqbal, Muhammad Kashif/0000-0003-4442-7498

Keywords

Tuberculosis Model, Fractal-Fractal Differential Operators, Stochastic Modelling, Qualitative Analysis, Numerical Solutions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Rashid, Saima;...et.al. (2022). "A comprehensive analysis of the stochastic fractal–fractional tuberculosis model via Mittag-Leffler kernel and white noise", Results in Physics, Vol.39.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

39

Issue

Start Page

End Page