Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The novel augmented Fermatean MCDM perspectives for identifying the optimal renewable energy power plant location

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorNallasivan Parthasarathy, Thirumalai
dc.contributor.authorPragathi, Subramaniam
dc.contributor.authorShanmugam, Ponnan
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorAhmadian, Ali
dc.contributor.authorKang, Daekook
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-05-14T08:06:43Z
dc.date.available2024-05-14T08:06:43Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe Fermatean fuzzy set has been authorized as a suitable tool for the uncertainty and vagueness of information by augmenting the spatial space of acceptance membership and non-acceptance membership degrees of both intuitionistic and Pythagorean fuzzy sets. Solar energy does not emit any hazardous gases into the atmosphere, making it one of the most effective strategies to reduce global warming in the environment. Under a variety of circumstances, finding a spot for a photovoltaic solar power plant might be difficult. As a result, we experiment with multi-criteria decision-making (MCDM) techniques. We presented a hybrid technique based on the PV-SPSS method based on the Removal Effects of Criteria (MEREC) and Multiple Objective Optimization on the Basis of Ratio Analysis with Full Multiplicative Form (MULTIMOORA) analysis. The MEREC approach is used to calculate the weightage of each attribute, and MULTIMOORA is used to find the ranking of the alternatives. Also, a new rectified generalized score function determines the score value of FFSs. Culmination: the validity of the result is assessed by implementing the existing MCDM approaches and by changing the criterion weight.en_US
dc.description.publishedMonth10
dc.identifier.citationNarayanamoorthy, Samayan...et.al. (2022). "The novel augmented Fermatean MCDM perspectives for identifying the optimal renewable energy power plant location", Sustainable Energy Technologies and Assessments, Vol.53, No.2.en_US
dc.identifier.doi10.1016/j.seta.2022.102488
dc.identifier.issn2213-1388
dc.identifier.issue2en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/8312
dc.identifier.volume53en_US
dc.language.isoenen_US
dc.relation.ispartofSustainable Energy Technologies and Assessmentsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMCDMen_US
dc.subjectFermatean Fuzzy Seten_US
dc.subjectMERECen_US
dc.subjectMULTIMOORAen_US
dc.subjectPV-SPSSen_US
dc.titleThe novel augmented Fermatean MCDM perspectives for identifying the optimal renewable energy power plant locationtr_TR
dc.titleThe Novel Augmented Fermatean Mcdm Perspectives for Identifying the Optimal Renewable Energy Power Plant Locationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: