Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations

dc.authorscopusid 7005872966
dc.authorscopusid 55246396100
dc.authorscopusid 55935081600
dc.authorwosid Rezapour, Shahram/N-4883-2016
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Nazemi, Sayyedeh Zahra
dc.contributor.author Rezapour, Shahram
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-22T11:44:28Z
dc.date.available 2022-03-22T11:44:28Z
dc.date.issued 2014
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia; [Nazemi, Sayyedeh Zahra; Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran en_US
dc.description.abstract In this paper, we present some results for the attractivity of solutions for a k-dimensional system of fractional functional differential equations involving the Caputo fractional derivative by using the classical Schauder's fixed-point theorem. Also, the global attractivity of solutions for a k-dimensional system of fractional differential equations involving Riemann-Liouville fractional derivative are obtained by using Krasnoselskii's fixed-point theorem. We give two examples to illustrate our main results. en_US
dc.description.publishedMonth 1
dc.description.sponsorship Azarbaijan Shahid Madani University en_US
dc.description.sponsorship Research of the second and third authors was supported by Azarbaijan Shahid Madani University. Also, the authors express their gratitude to the referees for their helpful suggestions which improved the final version of this paper. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Nazemi, Sayyedeh Zahra; Rezapour, Shahram (2014). "Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations", Journal of Inequalities and Applications. en_US
dc.identifier.doi 10.1186/1029-242X-2014-31
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-84899810986
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1186/1029-242X-2014-31
dc.identifier.wos WOS:000332040600006
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 24
dc.title Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations tr_TR
dc.title Attractivity for a K-Dimensional System of Fractional Functional Differential Equations and Global Attractivity for a K-Dimensional System of Nonlinear Fractional Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 22
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
352.57 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: