Dynamical Behaviours and Stability Analysis of a Generalized Fractional Model With a Real Case Study
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Introduction: Mathematical modelling is a rapidly expanding field that offers new and interesting oppor-tunities for both mathematicians and biologists. Concerning COVID-19, this powerful tool may help humans to prevent the spread of this disease, which has affected the livelihood of all people badly. Objectives: The main objective of this research is to explore an efficient mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework.Methods: The new model in this paper is formulated in the Caputo sense, employs a nonlinear time -varying transmission rate, and consists of ten population classes including susceptible, infected, diag-nosed, ailing, recognized, infected real, threatened, diagnosed recovered, healed, and extinct people. The existence of a unique solution is explored for the new model, and the associated dynamical beha-viours are discussed in terms of equilibrium points, invariant region, local and global stability, and basic reproduction number. To implement the proposed model numerically, an efficient approximation scheme is employed by the combination of Laplace transform and a successive substitution approach; besides, the corresponding convergence analysis is also investigated.Results: Numerical simulations are reported for various fractional orders, and simulation results are com-pared with a real case of COVID-19 pandemic in Italy. By using these comparisons between the simulated and measured data, we find the best value of the fractional order with minimum absolute and relative errors. Also, the impact of different parameters on the spread of viral infection is analyzed and studied.Conclusion: According to the comparative results with real data, we justify the use of fractional concepts in the mathematical modelling, for the new non-integer formalism simulates the reality more precisely than the classical framework.& COPY; 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Description
Shokat, Waseem/0009-0007-0398-0146
ORCID
Keywords
Fractional Model, Covid-19 Pandemic, Existence And Uniqueness Results, Stability Analysis, Numerical Method
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Baleanu, D...et.al. "Dynamical behaviours and stability analysis of a generalized fractional model with a real case study", Journal of Advanced Research, Vol.48, pp.157-173.
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
46
Source
Volume
48
Issue
Start Page
157
End Page
173
PlumX Metrics
Citations
CrossRef : 66
Scopus : 74
PubMed : 4
Captures
Mendeley Readers : 17
SCOPUS™ Citations
74
checked on Nov 24, 2025
Web of Science™ Citations
67
checked on Nov 24, 2025
Page Views
1
checked on Nov 24, 2025
Google Scholar™

OpenAlex FWCI
11.85521803
Sustainable Development Goals
2
ZERO HUNGER

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS
