Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative

dc.authorid Bayram, Mustafa/0000-0002-2994-7201
dc.authorscopusid 57210557042
dc.authorscopusid 56051853500
dc.authorscopusid 7005821294
dc.authorscopusid 7005872966
dc.authorwosid Inc, Mustafa/C-4307-2018
dc.authorwosid Bayram, Mustafa/Jan-8668-2023
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Partohaghighi, Mohammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Inc, Mustafa
dc.contributor.author Bayram, Mustafa
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-11-10T10:47:51Z
dc.date.available 2022-11-10T10:47:51Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ogretmenler Caddesi 14, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Partohaghighi, Mohammad] Univ Bonab, Dept Math, Bonab, Iran; [Inc, Mustafa] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey; [Bayram, Mustafa] Biruni Univ, Dept Comp Engn, Istanbul, Turkey en_US
dc.description Bayram, Mustafa/0000-0002-2994-7201 en_US
dc.description.abstract A powerful algorithm is proposed to get the solutions of the time fractional Advection-Diffusion equation(TFADE): (ABC)D(0+)(,t)(beta)u(x, t) = zeta u(xx)(x, t) - kappa u(x)(x, t) + F(x, t), 0 < beta <= 1. The time-fractional derivative (ABC)D(0+)(,t)(beta)u(x, t) is described in the Atangana-Baleanu Caputo concept. The basis of our approach is transforming the original equation into a new equation by imposing a transformation involving a fictitious coordinate. Then, a geometric scheme namely the group preserving scheme (GPS) is implemented to solve the new equation by taking an initial guess. Moreover, in order to present the power of the presented approach some examples are solved, successfully. en_US
dc.description.publishedMonth 1
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Partohaghighi, Mohammad...et al. (2020). "On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative", Open Physics, Vol. 17, No. 1, pp. 816-822. en_US
dc.identifier.doi 10.1515/phys-2019-0085
dc.identifier.endpage 822 en_US
dc.identifier.issn 2391-5471
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85078190757
dc.identifier.scopusquality Q2
dc.identifier.startpage 816 en_US
dc.identifier.uri https://doi.org/10.1515/phys-2019-0085
dc.identifier.volume 17 en_US
dc.identifier.wos WOS:000513897100001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sciendo en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 14
dc.subject Fictitious Time Integration Method en_US
dc.subject Group Preserving Scheme en_US
dc.subject Time Fractional Advection-Diffusion Equation en_US
dc.subject Atangana-Baleanu Caputo Derivative en_US
dc.title On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative tr_TR
dc.title On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
543.03 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: