Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equation

dc.authoridVeeresha, Dr. P./0000-0002-4468-3048
dc.authoridD G, Prakasha/0000-0001-6453-0308
dc.authorscopusid57204818105
dc.authorscopusid35848810800
dc.authorscopusid7005872966
dc.authorwosidD. G., Prakasha/Aaa-5551-2020
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.authorwosidVeeresha, Dr. P./Z-1430-2019
dc.contributor.authorVeeresha, Pundikala
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorPrakasha, Doddabhadrappla Gowda
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-01-13T13:23:46Z
dc.date.available2020-01-13T13:23:46Z
dc.date.issued2019
dc.departmentÇankaya Universityen_US
dc.department-temp[Veeresha, Pundikala; Prakasha, Doddabhadrappla Gowda] Karnatak Univ, Dept Math, Fac Sci & Technol, Dharwad 580003, Karnataka, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, Eskisehir Yolu 29 Km,Yukariyurtcu Mahallesi, TR-406790 Etimesgut, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romaniaen_US
dc.descriptionVeeresha, Dr. P./0000-0002-4468-3048; D G, Prakasha/0000-0001-6453-0308en_US
dc.description.abstractThe q-homotopy analysis transform method (q-HATM) is employed to find the solution for the fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation in the present frame work. To ensure the applicability and efficiency of the proposed algorithm, we consider three distinct initial conditions with two of them having Jacobi elliptic functions. The numerical simulations have been conducted to verify that the proposed scheme is reliable and accurate. Moreover, the uniqueness and convergence analysis for the projected problem is also presented. The obtained results elucidate that the proposed technique is easy to implement and very effective to analyze the complex problems arising in science and technology.en_US
dc.description.publishedMonth3
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationVeeresha, Pundikala; Prakasha, Doddabhadrappla Gowda; Baleanu, Dumitru, "An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equation",Mathematics, Vol. 7, No.3, (March 2019)en_US
dc.identifier.doi10.3390/math7030265
dc.identifier.issn2227-7390
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85063889193
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/math7030265
dc.identifier.volume7en_US
dc.identifier.wosWOS:000464353400002
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectQ-Homotopy Analysis Transform Methoden_US
dc.subjectFractional Kolmogorov-Petrovskii-Piskunov Equationen_US
dc.subjectLaplace Transformen_US
dc.titleAn Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equationtr_TR
dc.titleAn Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov-Petrovskii Equationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: