Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A New Hybrid Algorithm for Continuous Optimization Problem

dc.authoridFarnad, Behnam/0000-0002-3558-3432
dc.authorscopusid57200088203
dc.authorscopusid25031262700
dc.authorscopusid7005872966
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.authorwosidFarnad, Behnam/Jzd-5868-2024
dc.contributor.authorFarnad, Behnam
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorJafarian, Ahmad
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-03-31T20:01:10Z
dc.date.available2020-03-31T20:01:10Z
dc.date.issued2018
dc.departmentÇankaya Universityen_US
dc.department-temp[Farnad, Behnam] Islamic Azad Univ, Urmia Branch, Dept Comp Engn, Orumiyeh, Iran; [Jafarian, Ahmad] Islamic Azad Univ, Urmia Branch, Dept Math, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romaniaen_US
dc.descriptionFarnad, Behnam/0000-0002-3558-3432en_US
dc.description.abstractThis paper applies a new hybrid method by a combination of three population base algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS). The proposed method has been inspired from natural selection process and it completes this process in GA by using the PSO and SOS. It tends to minimize the execution time and in addition to reduce the complexity. Symbiotic organisms search is a robust and powerful metaheuristic algorithm which has attracted increasing attention in recent decades. There are three alternative phases in the proposed algorithm: GA, which develops and selects best population for the next phases, PSO, which gets experiences for each appropriate solution and updates them as well and SOS, which benefits from previous phases and performs symbiotic interaction update phases in the real-world population. The proposed algorithm was tested on the set of best known unimodal and multimodal benchmark functions in various dimensions. It has further been evaluated in, the experiment on the clustering of benchmark datasets. The obtained results from basic and non-parametric statistical tests confirmed that this hybrid method dominates in terms of convergence, execution time, success rate. It optimizes the high dimensional and complex functions Rosenbrock and Griewank up to 10(-330) accuracy in less than 3 s, outperforming other known algorithms. It had also applied clustering datasets with minimum intra-cluster distance and error rate. (C) 2017 Elsevier Inc. All rights reserved.en_US
dc.description.publishedMonth3
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationFarnad, Behnam; Jafarian, Ahmad; Baleanu, Dumitru, "A new hybrid algorithm for continuous optimization problem", Applied Mathematical Modelling, Vol. 55, pp. 652-673, (2018)en_US
dc.identifier.doi10.1016/j.apm.2017.10.001
dc.identifier.endpage673en_US
dc.identifier.issn0307-904X
dc.identifier.issn1872-8480
dc.identifier.scopus2-s2.0-85039412352
dc.identifier.scopusqualityQ1
dc.identifier.startpage652en_US
dc.identifier.urihttps://doi.org/10.1016/j.apm.2017.10.001
dc.identifier.volume55en_US
dc.identifier.wosWOS:000423005800039
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectSymbiotic Organisms Searchen_US
dc.subjectGlobal Optimizationen_US
dc.subjectHybrid Algorithmen_US
dc.subjectData Clusteringen_US
dc.titleA New Hybrid Algorithm for Continuous Optimization Problemtr_TR
dc.titleA New Hybrid Algorithm for Continuous Optimization Problemen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: