A Numerical Simulation on the Effect of Vaccination and Treatments for the Fractional Hepatitis B Model
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Asme
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The aim of this paper is to develop a fractional order mathematical model for describing the spread of hepatitis B virus (HBV). We also provide a rigorous mathematical analysis of the stability of the disease-free equilibrium (DFE) and the endemic equilibrium of the system based on the basic reproduction number. Here, the infectious disease HBV model is described mathematically in a nonlinear system of differential equations in a caputo sense, and hence, Jacobi collocation method is used to reduce into a system of nonlinear equations. Finally, Newton Raphson method is used for the systems of nonlinear equations to arrive at an approximate solution and matlab 2018 has helped us to simulate the nature of each compartment and effects of the possible control strategies (i.e., vaccination and isolation).
Description
Suthar, Dl/0000-0001-9978-2177; Anteneh, Haile Habenom/0000-0002-9884-6666
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Habenom, Haile;...et.al. (2021). "A Numerical Simulation on the Effect of Vaccination and Treatments for the Fractional Hepatitis B Model", Journal Of Computational And Nonlinear Dynamics, Vol.16, No.1.
WoS Q
Q3
Scopus Q
Q2

OpenCitations Citation Count
21
Source
Volume
16
Issue
1
Start Page
End Page
PlumX Metrics
Citations
Scopus : 47
Captures
Mendeley Readers : 9
SCOPUS™ Citations
46
checked on Nov 25, 2025
Web of Science™ Citations
35
checked on Nov 25, 2025
Google Scholar™

OpenAlex FWCI
7.26502529
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

13
CLIMATE ACTION

17
PARTNERSHIPS FOR THE GOALS
