Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems

dc.authorscopusid 56184182600
dc.authorscopusid 7005872966
dc.authorscopusid 57204945844
dc.authorscopusid 57205376356
dc.contributor.author Sabir, Z.
dc.contributor.author Baleanu, D.
dc.contributor.author Ali, M.R.
dc.contributor.author Sadat, R.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-02-09T11:41:36Z
dc.date.available 2024-02-09T11:41:36Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp Sabir Z., Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan; Baleanu D., Department of Mathematics, Cankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele, Romania, d Institute of Space Sciences, Magurele, Romania; Ali M.R., Faculty of Engineering and Technology, Future University, Cairo, Egypt, Department of Basic Science, Faculty of Engineering at Benha, Benha University, Benha, Egypt; Sadat R., Department of Mathematics, Zagazig Faculty of Engineering, Zagazig University, Zagazig, Egypt en_US
dc.description.abstract In this work, a class of singular periodic nonlinear differential systems (SP-NDS) in nuclear physics is numerically treated by using a novel computing approach based on the Gudermannian neural networks (GNNs) optimized by the mutual strength of global and local search abilities of genetic algorithms (GA) and sequential quadratic programming (SQP), i.e. GNNs-GA-SQP. The stimulation of offering this numerical computing work comes from the aim of introducing a consistent framework that has an effective structure of GNNs optimized with the backgrounds of soft computing to tackle such thought-provoking systems. Two different problems based on the SPNDS in nuclear physics will be examined to check the proficiency, robustness and constancy of the GNNs-GA-SQP. The outcomes obtained through GNNs-GA-SQP are compared with the true results to find the worth of designed procedures based on the multiple trials. © 2022 Informa UK Limited, trading as Taylor & Francis Group. en_US
dc.identifier.citation Sabir, Zulqurnain;...et.al. (2022). "A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems", International Journal of Computer Mathematics, Vol.99, No.10, pp.2091-2104. en_US
dc.identifier.doi 10.1080/00207160.2022.2037132
dc.identifier.endpage 2104 en_US
dc.identifier.issn 0020-7160
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-85125349682
dc.identifier.scopusquality Q3
dc.identifier.startpage 2091 en_US
dc.identifier.uri https://doi.org/10.1080/00207160.2022.2037132
dc.identifier.volume 99 en_US
dc.identifier.wosquality Q2
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.ispartof International Journal of Computer Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 22
dc.subject Genetic Algorithm en_US
dc.subject Gudermannian Neural Networks en_US
dc.subject Nuclear Physics en_US
dc.subject Periodic Singular Systems en_US
dc.subject Sequential Quadratic Programming en_US
dc.title A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems tr_TR
dc.title A Novel Computing Stochastic Algorithm To Solve the Nonlinear Singular Periodic Boundary Value Problems en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: