Mekansal Çeşitliliğin Sualtı Optik Kablosuz İletişime Etkisi
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Su altı optik kablosuz iletişim sistemleri, son zamanlarda yüksek veri hızıyla iletim özelliği sayesinde kullanımı artmıştır. Fakat su altı ortamlarda optik dalgaların yayılmasındaki zorlayıcı etken türbülanstır. Türbülansdan kaynaklı yoğunluk dalgalanmaları ve performans düşüşü görülmektedir. Bu tezde, okyanus türbülansından etkilerini azaltmak için tasarlanan mekansal çeşitlilik modeli kullanılıp performans iyileştirmeleri incelenmiştir. Tasarlanan modelimizde; alıcı tarafında bir nokta dedektörü, verici tarafında çoklu halka şeklindeki ışınlar kullanılmaktadır. Huygens-Fresnel prensibi kullanılarak ortalama alınan yoğunluk ve yoğunluğun ortalama karesi bulunmuştur. Daha sonrasında bulunan parametreler ile oluşturulan model için sintilasyon indeksi ve bit hata oranı (BER) bulunmuştur. Sıvının birim kütlesi başına kinetik enerjinin dağılma hızı, ıkırılma indisine katkı yapan sıcaklığın tuzluluğa oranı, kaynak boyutu, halka yarıçapı, alan genliği, ortalama kare sıcaklığın dağılma hızı, kolmogorov iç ölçeği, yayılma mesafesi, kırılma indisi spektrumu ve dalga boyu parametrelerine göre sintilasyon indeksi ve bit hata oranı karşılaştırıldı ve değerlendirildi. MATLAB programı kullanılarak hesaplamalar yapılıp grafikler oluşturuldu. Bu tezde, su altı türbülanslı ortamda ışın yayılımı için sintilasyonda azalmalar ve BER hesabında düşmeler gözlemlenmesi amaçlanmıştır.
Underwater optical wireless communication systems have recently increased in use due to their high data rate transmission feature. However, turbulence is the compelling factor in the propagation of optical waves in underwater environments. Intensity fluctuations and performance degradation due to turbulence are observed. In this thesis, a spatial diversity model designed to reduce the effects of ocean turbulence is used and performance improvements are investigated. In our designed model, a point detector is used on the receiver side and annular array beam is used on the transmitter side. The average received intensity and the mean square of the intensity are found by using the Huygens-Fresnel principle. Later, the scintillation index and bit error rate are found for the model created with the found parameters. The scintillation index and bit error rate (BER) were compared and evaluated according to the values of the rate of dissipation of kinetic energy per unit mass of fluid, ratio of temperature to salinity contributions to the refractive index spectrum, source size, ring radius, field amplitude, the rate of dissipation of the mean-squared temperature, Kolmogorov inner scale, propagation distance and wavelength. Calculations were made using the MATLAB program and graphics were created. In this thesis, it is aimed to observe the decreases in scintillation and BER calculation for beam propagation in underwater turbulent environment.
Underwater optical wireless communication systems have recently increased in use due to their high data rate transmission feature. However, turbulence is the compelling factor in the propagation of optical waves in underwater environments. Intensity fluctuations and performance degradation due to turbulence are observed. In this thesis, a spatial diversity model designed to reduce the effects of ocean turbulence is used and performance improvements are investigated. In our designed model, a point detector is used on the receiver side and annular array beam is used on the transmitter side. The average received intensity and the mean square of the intensity are found by using the Huygens-Fresnel principle. Later, the scintillation index and bit error rate are found for the model created with the found parameters. The scintillation index and bit error rate (BER) were compared and evaluated according to the values of the rate of dissipation of kinetic energy per unit mass of fluid, ratio of temperature to salinity contributions to the refractive index spectrum, source size, ring radius, field amplitude, the rate of dissipation of the mean-squared temperature, Kolmogorov inner scale, propagation distance and wavelength. Calculations were made using the MATLAB program and graphics were created. In this thesis, it is aimed to observe the decreases in scintillation and BER calculation for beam propagation in underwater turbulent environment.
Description
Keywords
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
86