Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Ranking surgical skills using an attention-enhanced Siamese network with piecewise aggregated kinematic data

dc.authorid Ogul, Burcin Buket/0000-0001-7623-3490
dc.authorscopusid 56734459000
dc.authorscopusid 55123261200
dc.authorscopusid 23467461900
dc.authorwosid Ozdemir, Suat/D-8406-2012
dc.contributor.author Ogul, Burcin Buket
dc.contributor.author Oğul, Burçin Buket
dc.contributor.author Gilgien, Matthias
dc.contributor.author Ozdemir, Suat
dc.contributor.other Yazılım Mühendisliği
dc.date.accessioned 2024-05-14T07:44:20Z
dc.date.available 2024-05-14T07:44:20Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Ogul, Burcin Buket; Ozdemir, Suat] Hacettepe Univ, Dept Comp Engn, Ankara, Turkey; [Ogul, Burcin Buket] Cankaya Univ, Dept Software Engn, Ankara, Turkey; [Gilgien, Matthias] Norwegian Sch Sport Sci, Dept Phys Performance, Oslo, Norway; [Gilgien, Matthias] Engadin Hlth & Innovat Fdn, Ctr Alpine Sports Biomech, Samedan, Switzerland en_US
dc.description Ogul, Burcin Buket/0000-0001-7623-3490 en_US
dc.description.abstract Purpose Surgical skill assessment using computerized methods is considered to be a promising direction in objective performance evaluation and expert training. In a typical architecture for computerized skill assessment, a classification system is asked to assign a query action to a predefined category that determines the surgical skill level. Since such systems are still trained by manual, potentially inconsistent annotations, an attempt to categorize the skill level can be biased by potentially scarce or skew training data. Methods We approach the skill assessment problem as a pairwise ranking task where we compare two input actions to identify better surgical performance. We propose a model that takes two kinematic motion data acquired from robot-assisted surgery sensors and report the probability of a query sample having a better skill than a reference one. The model is an attention-enhanced Siamese Long Short-Term Memory Network fed by piecewise aggregate approximation of kinematic data. Results The proposed model can achieve higher accuracy than existing models for pairwise ranking in a common dataset. It can also outperform existing regression models when applied in their experimental setup. The model is further shown to be accurate in individual progress monitoring with a new dataset, which will serve as a strong baseline. Conclusion This relative assessment approach may overcome the limitations of having consistent annotations to define skill levels and provide a more interpretable means for objective skill assessment. Moreover, the model allows monitoring the skill development of individuals by comparing two activities at different time points. en_US
dc.description.publishedMonth 6
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) en_US
dc.description.sponsorship Burcin Buket Oul was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under 2214-A-PhD Research Scholarship Program on Abroad. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Oğul, Burçin Buket; Gilgien, Matthias; Özdemir, Suat. (2022). "Ranking surgical skills using an attention-enhanced Siamese network with piecewise aggregated kinematic data", International Journal of Computer Assisted Radiology and Surgery, Vol.17, No.6, pp.1039-1048. en_US
dc.identifier.doi 10.1007/s11548-022-02581-8
dc.identifier.endpage 1048 en_US
dc.identifier.issn 1861-6410
dc.identifier.issn 1861-6429
dc.identifier.issue 6 en_US
dc.identifier.pmid 35286585
dc.identifier.scopus 2-s2.0-85126216541
dc.identifier.scopusquality Q2
dc.identifier.startpage 1039 en_US
dc.identifier.uri https://doi.org/10.1007/s11548-022-02581-8
dc.identifier.volume 17 en_US
dc.identifier.wos WOS:000768639000001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Robot-Assisted Surgery en_US
dc.subject Skill Assessment en_US
dc.subject Attention-Enhanced Siamese Networks en_US
dc.subject Assessment Of Surgical Skills en_US
dc.title Ranking surgical skills using an attention-enhanced Siamese network with piecewise aggregated kinematic data tr_TR
dc.title Ranking Surgical Skills Using an Attention-Enhanced Siamese Network With Piecewise Aggregated Kinematic Data en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 7a647f6a-98e8-4f6a-9c2a-6795f0078af9
relation.isAuthorOfPublication.latestForDiscovery 7a647f6a-98e8-4f6a-9c2a-6795f0078af9
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
753.16 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: