Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the p-Laplacian operator at resonance
dc.authorid | Panda, Sumati Kumari/0000-0002-0220-8222 | |
dc.authorscopusid | 25929845700 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 57226721736 | |
dc.authorscopusid | 56397795700 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Panda, Sumati Kumari/D-9973-2016 | |
dc.contributor.author | Adjabi, Yassine | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Bouloudene, Mokhtar | |
dc.contributor.author | Panda, Sumati Kumari | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-01-23T13:34:03Z | |
dc.date.available | 2024-01-23T13:34:03Z | |
dc.date.issued | 2023 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Adjabi, Yassine; Bouloudene, Mokhtar] Univ Mhamed Bougara, Fac Sci, Dept Math, Boumerdes, Algeria; [Adjabi, Yassine] USTHB, Fac Math, Dynam Syst Lab, Bab Ezzouar, Algeria; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkiye; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Bouloudene, Mokhtar] Univ MHamed Bougara, Dynam Engines & Vibroacoust Lab, Boumerdes, Algeria; [Panda, Sumati Kumari] GMR Inst Technol, Dept Math, Rajam 532127, India | en_US |
dc.description | Panda, Sumati Kumari/0000-0002-0220-8222 | en_US |
dc.description.abstract | The novelty of this paper is that, based on Mawhin's continuation theorem, we present some sufficient conditions that ensure that there is at least one solution to a particular kind of a boundary value problem with the p-Laplacian and generalized fractional Caputo derivative. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Adjabi, Yassine;...et.al. (2023). "Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the p-Laplacian operator at resonance", Boundary Value Problems, Vol.2023, No.1. | en_US |
dc.identifier.doi | 10.1186/s13661-023-01751-0 | |
dc.identifier.issn | 1687-2770 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85162041257 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1186/s13661-023-01751-0 | |
dc.identifier.volume | 2023 | en_US |
dc.identifier.wos | WOS:001006548300001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Jarad, Fahd | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Two-Point Boundary Value Problem | en_US |
dc.subject | Generalized Caputo Derivative | en_US |
dc.subject | P-Laplacian | en_US |
dc.subject | Resonance | en_US |
dc.subject | Coincidence Degree | en_US |
dc.subject | Mawhin'S Continuation Theorem | en_US |
dc.title | Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the p-Laplacian operator at resonance | tr_TR |
dc.title | Revisiting Generalized Caputo Derivatives in the Context of Two-Point Boundary Value Problems With the P-Laplacian Operator at Resonance | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |