Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Variational Iteration Method as a Kernel Constructive Technique

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The variational iteration method newly plays a crucial role in establishing new integral equations. The Lagrange multipliers of the method serve kernel functions of the Volterra integral equations. A concept of an optimal integral equation is proposed. Then nonlinear examples are used to show the strategy's efficiency. (C) 2014 Elsevier Inc. All rights reserved.

Description

Wu, Guo-Cheng/0000-0002-1946-6770

Keywords

Variational Iteration Method, Volterra Integral Equation, Duffing Equation, Numerical Solution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Wu, G:C., Baleanu, D., Deng, Z.G. (2015). Variational iteration method as a kernel constructive technique. Applied Mathematical Modelling, 39(15), 4378-4384. http://dx.doi.org/10.1016/j.apm.2014.12.032

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
14

Source

Volume

39

Issue

15

Start Page

4378

End Page

4384
PlumX Metrics
Citations

CrossRef : 14

Scopus : 18

Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.3080865

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo