Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Identification of composite-metal bolted structures with nonlinear contact effect

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The middle layer model has been used in recent years to better describe the connection behavior in composite structures. The influencing parameters including low pre-screw and high preload have the main effects on nonlinear behavior of the connection as well as the amplitude of the excitation force applied to the structure. Therefore, in this study, the effects of connection behavior on the general structure in two sections of increasing damping and reducing the stiffness of the structures that lead to non-linear phenomena have been investigated. Due to the fact that in composite structure we are faced to the limitation of increasing screw preload which tend to structural damage, so the investigation on the hybrid connection (metal-composite) behavior is conducted. In this research, using the two-dimensional middle layer theory, the stiffness properties of the connection are modeled by normal stiffness and the connection damping is modeled using the structural damping in the shear direction. Nonlinear frequency response diagrams have been extracted twice for two different excitation forces and then proposed by a high-order multitasking approximation according to the response range of the nonlinear finite element model for stiffness and damping of the connection. The effect of increasing the amplitude of the excitation force and decreasing the preload of the screw on the nonlinear behavior of the component has been extracted. The results show that the limited presented novel component model has been accurately verified on the model obtained from the vibration experimental test and the reduction of nonlinear model updating based on that is represented. The comparison results show good agreement with a maximum of 1.33% error. © 2022 Tech Science Press. All rights reserved.

Description

Keywords

Hybrid Joint Behavior, Nonlinear Equation, Nonlinear Frequency Response Function, Thin Laminated Element

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ghalandari, Mohammad...et al. (2022). "Identification of composite-metal bolted structures with nonlinear contact effect", Computers, Materials and Continua, Vol. 70, No. 2, pp. 3383-3397.

WoS Q

Scopus Q

Source

Computers, Materials and Continua

Volume

70

Issue

2

Start Page

3383

End Page

3397