Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning

dc.authorid Bayer, Ozgur/0000-0003-0508-2263
dc.authorid Ozgirgin Yapici, Ekin/0000-0002-7550-5949
dc.authorid Ulucak, Oguzhan/0000-0002-2063-2553
dc.authorscopusid 57220077206
dc.authorscopusid 57193872973
dc.authorscopusid 37017931600
dc.authorscopusid 15070338100
dc.authorscopusid 57189516495
dc.authorscopusid 55371892800
dc.authorwosid Kocak, Eyup/Hik-2192-2022
dc.authorwosid Bayer, Özgür/Caf-6447-2022
dc.authorwosid Ayli, Ulku Ece/J-2906-2016
dc.contributor.author Ulucak, Oguzhan
dc.contributor.author Beldek, Ulaş
dc.contributor.author Kocak, Eyup
dc.contributor.author Bayer, Ozgur
dc.contributor.author Beldek, Ulas
dc.contributor.author Yapic, Ekin Ozgirgin
dc.contributor.author Ayli, Ece
dc.contributor.authorID 59950 tr_TR
dc.contributor.authorID 31329 tr_TR
dc.contributor.authorID 265836 tr_TR
dc.contributor.other Mekatronik Mühendisliği
dc.date.accessioned 2022-04-01T12:13:49Z
dc.date.available 2022-04-01T12:13:49Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Ulucak, Oguzhan] Cankaya Univ, Dept Mechatron Engn, TR-06810 Ankara, Turkey; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, TR-06560 Ankara, Turkey; [Kocak, Eyup; Beldek, Ulas; Yapic, Ekin Ozgirgin; Ayli, Ece] Cankaya Univ, Dept Mech Engn, TR-06810 Ankara, Turkey; [Bayer, Ozgur] MiddleEast Tech Univ, Dept Mech Engn, TR-06810 Ankara, Turkey en_US
dc.description Bayer, Ozgur/0000-0003-0508-2263; Ozgirgin Yapici, Ekin/0000-0002-7550-5949; Ulucak, Oguzhan/0000-0002-2063-2553 en_US
dc.description.abstract Green energy has seen a huge surge of interest recently due to various environmental and financial reasons. To extract the most out of a renewable system and to go greener, new approaches are evolving. In this paper, the capability of Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System in geometrical optimization of a solar chimney power plant (SCPP) to enhance generated power is investigated to reduce the time cost and errors when optimization is performed with numerical or experimental methods. It is seen that both properly constructed artificial neural networks (ANN) and adaptive-network-based fuzzy inference system (ANFIS) optimized geometries give higher performance than the numerical results. Also, to validate the accuracy of the ANN and ANFIS predictions, the obtained results are compared with the numerical results. Both soft computing methods over predict the power output values with MRE values of 12.36% and 7.25% for ANN and ANFIS, respectively. It is seen that by utilizing ANN and ANFIS algorithms, more power can be extracted from the SCPP system compared to conventional computational fluid dynamics (CFD) optimized geometry with trying a lot more geometries in a notably less time when it is compared with the numerical technique. It is worth mentioning that the optimization method that is developed can be implemented to all engineering problems that need geometric optimization to maximize or minimize the objective function. en_US
dc.description.publishedMonth 5
dc.description.sponsorship METU-BAP project [GAP-302-2020-10245] en_US
dc.description.sponsorship This project is supported by the METU-BAP project (GAP-302-2020-10245). The computations are performed using the facilities of Cankaya University. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ulucak, Oğuzhan...et al (2021). "Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning", Journal of Energy Resources Technology-Transactions of the ASME, Vol. 143, No. 5. en_US
dc.identifier.doi 10.1115/1.4050049
dc.identifier.issn 0195-0738
dc.identifier.issn 1528-8994
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85107961256
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1115/1.4050049
dc.identifier.volume 143 en_US
dc.identifier.wos WOS:000636261800010
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Asme en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Performance Prediction en_US
dc.subject Ann en_US
dc.subject Anfis en_US
dc.subject Scpp en_US
dc.subject Soft Computing en_US
dc.subject Optimization en_US
dc.subject Renewable Energy en_US
dc.title Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning tr_TR
dc.title Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication cec8dcc4-1230-4d65-9f80-35156c33f801
relation.isAuthorOfPublication.latestForDiscovery cec8dcc4-1230-4d65-9f80-35156c33f801
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication.latestForDiscovery 5b0b2c59-0735-4593-b820-ff3847d58827

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: