Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Automorphisms of braid groups on closed surfaces which are not S-2, T-2, P-2 or the Klein bottle

No Thumbnail Available

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publ Co Pte Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Consider a surface braid group of n strings as a subgroup of the isotopy group of homeomorphisms of the surface permuting n fixed distinguished points. Each automorphism of the surface braid group (respectively, of the special surface braid group) is shown to be a conjugate action on the braid group (respectively, on the special braid group) induced by a homeomorphism of the underlying surface if the closed surface, either orientable or non-orientable, is of negative Euler characteristic. In other words, the group of automorphisms of such a surface braid group is isomorphic to the extended mapping class group of the surface with n punctures, while the outer automorphism group of the surface braid group is isomorphic to the extended mapping class group of the closed surface itself.

Description

Keywords

Surface Braids, Automorphism Group Of A Group, Surface Of Negative Euler Characteristics, Mapping Class Group

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Zhang, P. (2006). Automorphisms of braid groups on closed surfaces which are not S-2, T-2, P-2 or the Klein bottle. Journal of Knot Theoryand Its Ramifications, 15(9), 1231-1244. http://dx.doi.org/10.1142/S0218216506005044

WoS Q

Q4

Scopus Q

Q3

Source

Volume

15

Issue

9

Start Page

1231

End Page

1244