Application of the Complex Point Source Method To the Schrodinger Equation
| dc.contributor.author | Umul, Yusuf Z. | |
| dc.contributor.authorID | 42699 | tr_TR |
| dc.contributor.other | 06.02. Elektronik ve Haberleşme Mühendisliği | |
| dc.contributor.other | 06. Mühendislik Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2016-06-14T07:28:19Z | |
| dc.date.accessioned | 2025-09-18T14:08:45Z | |
| dc.date.available | 2016-06-14T07:28:19Z | |
| dc.date.available | 2025-09-18T14:08:45Z | |
| dc.date.issued | 2010 | |
| dc.description | Umul, Yusuf/0000-0001-9342-2728 | en_US |
| dc.description.abstract | The paraxial wave equation is a reduced form of the Helmholtz equation. Its solutions can be directly obtained from the solutions of the Helmholtz equation by using the method of complex point source. We applied the same logic to quantum mechanics, because the Schrodinger equation is parabolic in nature as the paraxial wave equation. We defined a differential equation, which is analogous to the Helmholtz equation for quantum mechanics and derived the solutions of the Schrodinger equation by taking into account the solutions of this equation with the method of complex point source. The method is applied to the problem of diffraction of matter waves by a shutter. (C) 2010 Elsevier Ltd. All rights reserved. | en_US |
| dc.description.publishedMonth | 11 | |
| dc.identifier.citation | Umul, Y.Z. (2010). Application of the complex point source method to the Schrodinger equation. Optics and Laser Technology, 42(8), 1323-1327. http://dx.doi.org/10.1016/j.optlastec.2010.04.012 | en_US |
| dc.identifier.doi | 10.1016/j.optlastec.2010.04.012 | |
| dc.identifier.issn | 0030-3992 | |
| dc.identifier.issn | 1879-2545 | |
| dc.identifier.scopus | 2-s2.0-77955694237 | |
| dc.identifier.uri | https://doi.org/10.1016/j.optlastec.2010.04.012 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13198 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Sci Ltd | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Schrodinger Equation | en_US |
| dc.subject | Complex Point Source | en_US |
| dc.subject | Diffraction Theory | en_US |
| dc.title | Application of the Complex Point Source Method To the Schrodinger Equation | en_US |
| dc.title | Application of the complex point source method to the Schrodinger equation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Umul, Yusuf/0000-0001-9342-2728 | |
| gdc.author.institutional | Umul, Yusuf Ziya | |
| gdc.author.scopusid | 6508177732 | |
| gdc.author.wosid | Umul, Yusuf/Abb-7738-2020 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Cankaya Univ, Fac Engn & Architecture, Elect & Commun Engn Dept, TR-06530 Ankara, Turkey | en_US |
| gdc.description.endpage | 1327 | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1323 | en_US |
| gdc.description.volume | 42 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2077692773 | |
| gdc.identifier.wos | WOS:000279098100025 | |
| gdc.openalex.fwci | 0.18969222 | |
| gdc.openalex.normalizedpercentile | 0.6 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | d358b535-da59-46d4-af99-a65a214cc40f | |
| relation.isAuthorOfPublication.latestForDiscovery | d358b535-da59-46d4-af99-a65a214cc40f | |
| relation.isOrgUnitOfPublication | 3f3f4ac0-1357-4a67-a7c4-465451ea38db | |
| relation.isOrgUnitOfPublication | 43797d4e-4177-4b74-bd9b-38623b8aeefa | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 3f3f4ac0-1357-4a67-a7c4-465451ea38db |