Extension of perturbation theory to quantum systems with conformable derivative
dc.authorid | Al-Masaeed, Mohamed/0000-0001-5647-2339 | |
dc.authorid | Al-Jamel, Ahmed/0000-0003-1801-610X | |
dc.authorscopusid | 57226353844 | |
dc.authorscopusid | 6602156175 | |
dc.authorscopusid | 57189867669 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Al-Jamel, Ahmed/Aag-6261-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Al-Masaeed, Mohamed | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Rabei, Eqab M. | |
dc.contributor.author | Al-Jamel, Ahmed | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-04-22T12:51:05Z | |
dc.date.available | 2022-04-22T12:51:05Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Al-Masaeed, Mohamed; Rabei, Eqab M.; Al-Jamel, Ahmed] Al al Bayt Univ, Fac Sci, Phys Dept, POB 130040, Mafraq 25113, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
dc.description | Al-Masaeed, Mohamed/0000-0001-5647-2339; Al-Jamel, Ahmed/0000-0003-1801-610X | en_US |
dc.description.abstract | In this paper, the perturbation theory is extended to be applicable for systems containing conformable derivative of fractional order alpha. This is needed as an essential and powerful approximation method for describing systems with conformable differential equations that are difficult to solve analytically. The work here is derived and discussed for the conformable Hamiltonian systems that appears in the conformable quantum mechanics. The required alpha-corrections for the energy eigenvalues and eigenfunctions are derived. To demonstrate this extension, three illustrative examples are given, and the standard values obtained by the traditional theory are recovered when alpha = 1. | en_US |
dc.description.publishedMonth | 10 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Al-Masaeed, Mohamed...et al. (2021). " Extension of perturbation theory to quantum systems with conformable derivative", Modern Physics Letters A, Vol. 36, No. 32. | en_US |
dc.identifier.doi | 10.1142/S021773232150228X | |
dc.identifier.issn | 0217-7323 | |
dc.identifier.issn | 1793-6632 | |
dc.identifier.issue | 32 | en_US |
dc.identifier.scopus | 2-s2.0-85118295262 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1142/S021773232150228X | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000712920100004 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 9 | |
dc.subject | Perturbation Theory | en_US |
dc.subject | Approximation Methods | en_US |
dc.subject | Solutions Of Wave Equation | en_US |
dc.subject | Bound States | en_US |
dc.subject | Perturbation And Fractional Calculus Methods | en_US |
dc.subject | Conformable Derivative | en_US |
dc.subject | Conformable Quantum Mechanics | en_US |
dc.subject | Hamiltonian Systems | en_US |
dc.title | Extension of perturbation theory to quantum systems with conformable derivative | tr_TR |
dc.title | Extension of Perturbation Theory To Quantum Systems With Conformable Derivative | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: