Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Advanced Analysis of Local Fractional Calculus Applied to the Rice Theory in Fractal Fracture Mechanics

No Thumbnail Available

Date

2021

Authors

Baleanu, Dumitru
Srivastava, H. M.

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this chapter, the recent results for the analysis of local fractional calculus are considered for the first time. The local fractional derivative (LFD) and the local fractional integral (LFI) in the fractional (real and complex) sets, the series and transforms involving the Mittag-Leffler function defined on Cantor sets are introduced and reviewed. The uniqueness of the solutions of the local fractional differential and integral equations and the local fractional inequalities are considered in detail. The local fractional vector calculus is applied to describe the Rice theory in fractal fracture mechanics.

Description

Keywords

Local Fractional Calculus, Local Fractional Derivative, Local Fractional Integral, Mittag-Leffler Function, Local Fractional Vector Calculus, Local Fractional Partial Differential Equation, Local Fractional Integral Transform, Local Fractional Integral Equation, Local Fractional Inequality, Rice Theory, Fractal Fracture Mechanics, Fractals

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Yang, Xiao-Jun; Baleanu, Dumitru; Srivastava, H. M. (2021). "Advanced Analysis of Local Fractional Calculus Applied to the Rice Theory in Fractal Fracture Mechanics", in Methods of Mathematical Modelling and Computation for Complex Systems, Vol. 373, pp. 105-133.

WoS Q

Scopus Q

Source

Methods of Mathematical Modelling and Computation for Complex Systems

Volume

373

Issue

Start Page

105

End Page

133