Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel

dc.authorid Kumar, Amit/0000-0002-3775-7037
dc.authorscopusid 57386079100
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Kumar, Amit
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-11T13:52:30Z
dc.date.available 2022-03-11T13:52:30Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Kumar, Amit] Balarampur Colege, Dept Math, Balarampur 723143, W Bengal, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Eskisehir Yolu 29 Km,Yukariyurtcu Mahallesi Mimar, TR-06790 Etimesgut, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele Buchares, Romania en_US
dc.description Kumar, Amit/0000-0002-3775-7037 en_US
dc.description.abstract Within this paper, we present an analysis of the fractional model of the Klein-Gordon (K-G) equation. K-G equation is considered as one of the significant equations in mathematical physics that describe the interaction of soliton in a collision less plasma. In a novel aspect of this work, we have used the latest form of fractional derivative (FCs), which contains the Mittag-Leffler type of kernel. The homotopy analysis transform method (HATM) is being taken to solve the fractional model of the K-G equation. A convergence study of HATM has been studied. The existence and uniqueness of the solution for the fractional K-G equation are presented. For verifying the obtained numerical outcomes regarding accuracy and competency, we have given different graphical presentations. Figures are reflecting that a novel form of the technique is a good organization in respect of proficiency and accurateness to solve the mentioned fractional problem. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Kumar, Amit; Baleanu, Dumitru (2021). "An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel", Mathematical Methods in the Applied Sciences, Vol. 44, No. 7, pp. 5458-5474. en_US
dc.identifier.doi 10.1002/mma.7122
dc.identifier.endpage 5474 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85097897471
dc.identifier.scopusquality Q1
dc.identifier.startpage 5458 en_US
dc.identifier.uri https://doi.org/10.1002/mma.7122
dc.identifier.volume 44 en_US
dc.identifier.wos WOS:000600672900001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Atangana&#8211 en_US
dc.subject Baleanu Derivative en_US
dc.subject Convergenve Analysis en_US
dc.subject Existence And Uniqueness en_US
dc.subject Fractional Klein&#8211 en_US
dc.subject Gordon Equation en_US
dc.subject Homotopy Analysis Transform Method en_US
dc.title An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel tr_TR
dc.title An Analysis for Klein-Gordon Equation Using Fractional Derivative Having Mittag-Leffler Kernel en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: