An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel
dc.authorid | Kumar, Amit/0000-0002-3775-7037 | |
dc.authorscopusid | 57386079100 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Kumar, Amit | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-03-11T13:52:30Z | |
dc.date.available | 2022-03-11T13:52:30Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Kumar, Amit] Balarampur Colege, Dept Math, Balarampur 723143, W Bengal, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Eskisehir Yolu 29 Km,Yukariyurtcu Mahallesi Mimar, TR-06790 Etimesgut, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele Buchares, Romania | en_US |
dc.description | Kumar, Amit/0000-0002-3775-7037 | en_US |
dc.description.abstract | Within this paper, we present an analysis of the fractional model of the Klein-Gordon (K-G) equation. K-G equation is considered as one of the significant equations in mathematical physics that describe the interaction of soliton in a collision less plasma. In a novel aspect of this work, we have used the latest form of fractional derivative (FCs), which contains the Mittag-Leffler type of kernel. The homotopy analysis transform method (HATM) is being taken to solve the fractional model of the K-G equation. A convergence study of HATM has been studied. The existence and uniqueness of the solution for the fractional K-G equation are presented. For verifying the obtained numerical outcomes regarding accuracy and competency, we have given different graphical presentations. Figures are reflecting that a novel form of the technique is a good organization in respect of proficiency and accurateness to solve the mentioned fractional problem. | en_US |
dc.description.publishedMonth | 5 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Kumar, Amit; Baleanu, Dumitru (2021). "An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel", Mathematical Methods in the Applied Sciences, Vol. 44, No. 7, pp. 5458-5474. | en_US |
dc.identifier.doi | 10.1002/mma.7122 | |
dc.identifier.endpage | 5474 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-85097897471 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 5458 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.7122 | |
dc.identifier.volume | 44 | en_US |
dc.identifier.wos | WOS:000600672900001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.subject | Atangana– | en_US |
dc.subject | Baleanu Derivative | en_US |
dc.subject | Convergenve Analysis | en_US |
dc.subject | Existence And Uniqueness | en_US |
dc.subject | Fractional Klein– | en_US |
dc.subject | Gordon Equation | en_US |
dc.subject | Homotopy Analysis Transform Method | en_US |
dc.title | An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel | tr_TR |
dc.title | An Analysis for Klein-Gordon Equation Using Fractional Derivative Having Mittag-Leffler Kernel | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 2 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: