Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Generalisation of the Malgrange-Ehrenpreis Theorem To Find Fundamental Solutions To Fractional Pdes

dc.contributor.author Fernandez, Arran
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2019-12-19T13:51:42Z
dc.date.accessioned 2025-09-18T16:08:01Z
dc.date.available 2019-12-19T13:51:42Z
dc.date.available 2025-09-18T16:08:01Z
dc.date.issued 2017
dc.description Fernandez, Arran/0000-0002-1491-1820 en_US
dc.description.abstract We present and prove a new generalisation of the Malgrange-Ehrenpreis theorem to fractional partial differential equations, which can be used to construct fundamental solutions to all partial differential operators of rational order and many of arbitrary real order. We demonstrate with some examples and mention a few possible applications. en_US
dc.description.sponsorship Engineering and Physical Sciences Research Council, UK en_US
dc.description.sponsorship The second author wishes to thank Anthony Ashton and Thanasis Fokas for helpful discussions and recommendations to the literature. Both authors would like to thank the anonymous referee for their very useful comments and remarks. The second author is funded by a grant from the Engineering and Physical Sciences Research Council, UK. en_US
dc.identifier.citation Baleanu, Dumitru; Fernandez, Arran (2017). A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs, Electronic Journal Of Qualitative Theory Of Differential Equations, 15, 1-12 en_US
dc.identifier.doi 10.14232/ejqtde.2017.1.15
dc.identifier.issn 1417-3875
dc.identifier.scopus 2-s2.0-85016098979
dc.identifier.uri https://doi.org/10.14232/ejqtde.2017.1.15
dc.identifier.uri https://hdl.handle.net/20.500.12416/14938
dc.language.iso en en_US
dc.publisher Univ Szeged, Bolyai institute en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Derivatives en_US
dc.subject Fundamental Solutions en_US
dc.subject Linear Partial Differential Equations en_US
dc.subject Constructive Solutions en_US
dc.title A Generalisation of the Malgrange-Ehrenpreis Theorem To Find Fundamental Solutions To Fractional Pdes en_US
dc.title A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Fernandez, Arran/0000-0002-1491-1820
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 57193722100
gdc.author.wosid Fernandez, Arran/E-7134-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Fernandez, Arran] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England en_US
gdc.description.endpage 12 en_US
gdc.description.issue 15 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000399306700001
gdc.openalex.fwci 1.835
gdc.opencitations.count 9
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.wos.citedcount 13
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files