An Expanded Analysis of Local Fractionalintegral Inequalities Via Generalized (s,p)-Convexity
dc.authorscopusid | 57226019419 | |
dc.authorscopusid | 57204202488 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 55355350700 | |
dc.authorscopusid | 55390580800 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Lakhdari, Abdelghani/Itv-7609-2023 | |
dc.authorwosid | Xu, Hongyan/I-4518-2017 | |
dc.authorwosid | Meftah, Badreddine/Aac-2470-2020 | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Lakhdari, Abdelghani | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Xu, Hongyan | |
dc.contributor.author | Meftah, Badreddine | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2025-05-11T17:05:58Z | |
dc.date.available | 2025-05-11T17:05:58Z | |
dc.date.issued | 2024 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Li, Hong] Gannan Normal Univ, Off Res, Ganzhou 341000, Jiangxi, Peoples R China; [Lakhdari, Abdelghani] Natl Higher Sch Technol & Engn, Dept CPST, Annaba 23005, Algeria; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkiye; [Jarad, Fahd] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Hawally 32093, Kuwait; [Xu, Hongyan] Suqian Univ, Sch Arts & Sci, Suqian 223800, Jiangsu, Peoples R China; [Xu, Hongyan] Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Jiangxi, Peoples R China; [Meftah, Badreddine] Univ 8 May 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, POB 401, Guelma 24000, Algeria | en_US |
dc.description.abstract | This research aims to scrutinize specific parametrized integral inequalities linked to 1,2, 3, and 4-point Newton-Cotes rules applicable to local fractional differentiable generalized (s,P)-convex functions. To accomplish this objective, we introduce a novel integral identity and deduce multiple integral inequalities tailored to mappings within the aforementioned function class. Furthermore, we present an illustrative example featuring graphical representations and potential practical applications. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1186/s13660-024-03152-y | |
dc.identifier.issn | 1029-242X | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85195539831 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1186/s13660-024-03152-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9664 | |
dc.identifier.volume | 2024 | en_US |
dc.identifier.wos | WOS:001244495400001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.subject | Newton-Cotes Formula | en_US |
dc.subject | Biparametrized Identity | en_US |
dc.subject | (S,P)-Convexity | en_US |
dc.subject | Local Fractional Integral | en_US |
dc.subject | Fractal Set | en_US |
dc.title | An Expanded Analysis of Local Fractionalintegral Inequalities Via Generalized (s,p)-Convexity | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 9 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |