Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Coupled common fixed point results involving a (phi,psi)-contractive condition for mixed g-monotone operators in partially ordered metric spaces

dc.authoridJain, Manish/0000-0003-1652-8718
dc.authoridTas, Kenan/0000-0001-8173-453X
dc.authoridKumar, Sanjay/0000-0002-2831-7953
dc.authoridGupta, Neetu/0000-0002-4957-9127
dc.authorscopusid55356774500
dc.authorscopusid9279157700
dc.authorscopusid57209819919
dc.authorscopusid57209931569
dc.authorwosidGupta, Neetu/Goh-2649-2022
dc.authorwosidJain, Manish/Jwa-3401-2024
dc.authorwosidKumar, Sanjay/Aaa-8916-2022
dc.authorwosidTas, Kenan/D-8441-2011
dc.contributor.authorJain, Manish
dc.contributor.authorTaş, Kenan
dc.contributor.authorTas, Kenan
dc.contributor.authorKumar, Sanjay
dc.contributor.authorGupta, Neetu
dc.contributor.authorID4971tr_TR
dc.date.accessioned2017-03-17T08:15:24Z
dc.date.available2017-03-17T08:15:24Z
dc.date.issued2012
dc.departmentÇankaya Universityen_US
dc.department-temp[Jain, Manish] Ahir Coll, Dept Math, Rewari 123401, India; [Tas, Kenan] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Kumar, Sanjay] DCRUST, Dept Math, Murthal, Sonepat, India; [Gupta, Neetu] YMCAUST, HAS Dept, Faridabad, Indiaen_US
dc.descriptionJain, Manish/0000-0003-1652-8718; Tas, Kenan/0000-0001-8173-453X; Kumar, Sanjay/0000-0002-2831-7953; Gupta, Neetu/0000-0002-4957-9127en_US
dc.description.abstractIn the setting of partially ordered metric spaces, using the notion of compatible mappings, we establish the existence and uniqueness of coupled common fixed points involving a (phi,psi)-contractive condition for mixed g-monotone operators. Our results extend and generalize the well- known results of Berinde (Nonlinear Anal. TMA 74: 7347-7355, 2011; Nonlinear Anal. TMA 75:3218-3228, 2012) and weaken the contractive conditions involved in the results of Alotaibi et al. (Fixed Point Theory Appl. 2011: 44, 2011), Bhaskar et al. (Nonlinear Anal. TMA 65:1379-1393, 2006), and Luong et al. (Nonlinear Anal. TMA 74:983-992, 2011). The effectiveness of the presented work is validated with the help of suitable examples.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationJain, M...et al. (2012). Coupled common fixed point results involving a (phi,psi)-contractive condition for mixed g-monotone operators in partially ordered metric spaces. Journal Of Inequalities Applications. http://dx.doi.org/10.1186/1029-242X-2012-285en_US
dc.identifier.doi10.1186/1029-242X-2012-285
dc.identifier.issn1029-242X
dc.identifier.scopus2-s2.0-84894416652
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2012-285
dc.identifier.wosWOS:000317844900018
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeropenen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPartially Ordered Seten_US
dc.subjectCompatible Mappingsen_US
dc.subjectG-Mixed Monotone Mappingsen_US
dc.subjectCoupled Coincidence Pointen_US
dc.subjectCoupled Common Fixed Pointen_US
dc.titleCoupled common fixed point results involving a (phi,psi)-contractive condition for mixed g-monotone operators in partially ordered metric spacestr_TR
dc.titleCoupled Common Fixed Point Results Involving a (φ,ψ)-Contractive Condition for Mixed G-Monotone Operators in Partially Ordered Metric Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication9cc98397-8c8f-4713-aa8a-09add1eac3bb
relation.isAuthorOfPublication.latestForDiscovery9cc98397-8c8f-4713-aa8a-09add1eac3bb

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Taş, Kenan.pdf
Size:
402.3 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: