Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical solutions of a novel designed prevention class in the HIV nonlinear model

dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorUmar, Muhammad
dc.contributor.authorRaja, Muhammad Asif Zahoor
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2022-08-29T11:50:59Z
dc.date.available2022-08-29T11:50:59Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe presented research aims to design a new prevention class (P) in the HIV nonlinear system, i.e., the HIPV model. Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of stochastic procedure based numerical computing schemes exploiting the artificial neural networks (ANNs) modeling legacy together with the optimization competence of the hybrid of global and local search schemes via genetic algorithms (GAs) and active-set approach (ASA), i.e., GA-ASA. The optimization performances through GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the HIPV model and its corresponding initial conditions represented with nonlinear systems of ODEs. To check the exactness of the proposed stochastic scheme, the comparison of the obtained results and Adams numerical results is performed. For the convergence measures, the learning curves are presented based on the different contact rate values. Moreover, the statistical performances through different operators indicate the stability and reliability of the proposed stochastic scheme to solve the novel designed HIPV model. © 2021 Tech Science Press. All rights reserved.en_US
dc.identifier.citationSabir, Zulqurnain...et al. (2021). "Numerical solutions of a novel designed prevention class in the HIV nonlinear model", CMES - Computer Modeling in Engineering and Sciences, Vol. 129, No. 1, pp. 227-251.en_US
dc.identifier.doi10.32604/cmes.2021.016611
dc.identifier.endpage251en_US
dc.identifier.issn1526-1492
dc.identifier.issue1en_US
dc.identifier.startpage227en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/5780
dc.identifier.volume129en_US
dc.language.isoenen_US
dc.relation.ispartofCMES - Computer Modeling in Engineering and Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActive-Set Algorithmen_US
dc.subjectAdams Resultsen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectConvergence Curvesen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectHIVen_US
dc.subjectInfection Modelen_US
dc.subjectPrevention Classen_US
dc.subjectSupervised Neural Networksen_US
dc.titleNumerical solutions of a novel designed prevention class in the HIV nonlinear modeltr_TR
dc.titleNumerical Solutions of a Novel Designed Prevention Class in the Hiv Nonlinear Modelen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: