Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Diverse Precise Traveling Wave Solutions Possessing Beta Derivative of the Fractional Differential Equations Arising in Mathematical Physics

dc.authorid Akbar, Ali/0000-0001-5688-6259
dc.authorscopusid 24436604100
dc.authorscopusid 7101802867
dc.authorscopusid 57918986900
dc.authorscopusid 8226968700
dc.authorscopusid 15622742900
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Mirza, Arshad/S-4809-2017
dc.authorwosid Siddique, Imran/Acg-3403-2022
dc.authorwosid Akbar, Ali/G-8025-2011
dc.contributor.author Siddique, Imran
dc.contributor.author Mirza, Arshad M.
dc.contributor.author Shahzadi, Kausar
dc.contributor.author Akbar, M. Ali
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-03-06T12:24:38Z
dc.date.available 2024-03-06T12:24:38Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Siddique, Imran; Shahzadi, Kausar] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan; [Mirza, Arshad M.] Univ Management & Technol, Dept Phys, Lahore 54770, Pakistan; [Akbar, M. Ali] Univ Rajshahi, Dept Appl Math, Rajshahi, Bangladesh; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description Akbar, Ali/0000-0001-5688-6259 en_US
dc.description.abstract In this paper, we obtain the novel exact traveling wave solutions in the form of trigonometric, hyperbolic and exponential functions for the nonlinear time fractional generalized reaction Duffing model and density dependent fractional diffusion-reaction equation in the sense of beta-derivative by using three fertile methods, namely, Generalized tanh (GT) method, Generalized Bernoulli (GB) sub-ODE method, and Riccati-Bernoulli (RB) sub-ODE method. The derived solutions to the aforementioned equations are validated through symbolic soft computations. To promote the vital propagated features; some investigated solutions are exhibited in the form of 2D and 3D graphics by passing on the specific values to the parameters under the confine conditions. The accomplished solutions show that the presented methods are not only powerful mathematical tools for generating more solutions of nonlinear time fractional partial differential equations but also can be applied to nonlinear space-time fractional partial differential equations. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Siddique, Imran;...et.al. (2022). "Diverse Precise Traveling Wave Solutions Possessing Beta Derivative of the Fractional Differential Equations Arising in Mathematical Physics", Journal of Function Spaces, Vol.2022. en_US
dc.identifier.doi 10.1155/2022/5613708
dc.identifier.issn 2314-8896
dc.identifier.issn 2314-8888
dc.identifier.scopus 2-s2.0-85139420947
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1155/2022/5613708
dc.identifier.volume 2022 en_US
dc.identifier.wos WOS:000863461900001
dc.identifier.wosquality Q1
dc.institutionauthor Jarad, Fahd
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.title Diverse Precise Traveling Wave Solutions Possessing Beta Derivative of the Fractional Differential Equations Arising in Mathematical Physics tr_TR
dc.title Diverse Precise Traveling Wave Solutions Possessing Beta Derivative of the Fractional Differential Equations Arising in Mathematical Physics en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: