Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Heuristic computing with active set method for the nonlinear Rabinovich–Fabrikant model

dc.authorscopusid 56184182600
dc.authorscopusid 7005872966
dc.authorscopusid 58083354000
dc.authorscopusid 6506561744
dc.contributor.author Sabir, Z.
dc.contributor.author Baleanu, D.
dc.contributor.author E Alhazmi, S.
dc.contributor.author Ben Said, S.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-06-05T10:59:37Z
dc.date.available 2024-06-05T10:59:37Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp Sabir Z., Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon; Baleanu D., Department of Mathematics, Cankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele, Romania, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Near East University, Mathematics research center, Mersin 10, Nicosia, 99138, North Cyprus, Turkey; E Alhazmi S., Mathematics Department, Al-Qunfudah University College, Umm Al-Qura University, Mecca, United States; Ben Said S., Department of Mathematical Sciences, UAE University, P. O. Box 15551, Al Ain, United Arab Emirates en_US
dc.description.abstract The current study shows a reliable stochastic computing heuristic approach for solving the nonlinear Rabinovich-Fabrikant model. This nonlinear model contains three ordinary differential equations. The process of stochastic computing artificial neural networks (ANNs) has been applied along with the competences of global heuristic genetic algorithm (GA) and local search active set (AS) methodologies, i.e., ANNs-GAAS. The construction of merit function is performed through the differential Rabinovich-Fabrikant model. The results obtained through this scheme are simple, reliable, and accurate, which have been calculated to optimize the merit function by using the GAAS method. The comparison of the obtained results through this scheme and the conventional reference solutions strengthens the correctness of the proposed method. Ten numbers of neurons along with the log-sigmoid transfer function in the neural network structure have been used to solve the model. The values of the absolute error are performed around 10−07 and 10−08 for each class of the Rabinovich-Fabrikant model. Moreover, the reliability of the ANNs-GAAS approach is observed by using different statistical approaches for solving the Rabinovich-Fabrikant model. © 2023 The Authors en_US
dc.description.publishedMonth 11
dc.description.sponsorship Deanship for Research & Innovation; Ministry of Education in Saudi Arabia, (IFP22UQU4282396DSR052) en_US
dc.identifier.citation Sabir, Zulqurnain...et al. "Heuristic computing with active set method for the nonlinear Rabinovich–Fabrikant model", Heliyon, Vol. 9, No. 11. en_US
dc.identifier.doi 10.1016/j.heliyon.2023.e22030
dc.identifier.issn 2405-8440
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85176255147
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.heliyon.2023.e22030
dc.identifier.volume 9 en_US
dc.identifier.wosquality Q2
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof Heliyon en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Active Set Method en_US
dc.subject Artificial Neural Networks en_US
dc.subject Genetic Algorithm en_US
dc.subject Numerical Solutions en_US
dc.subject Rabinovich-Fabrikant en_US
dc.title Heuristic computing with active set method for the nonlinear Rabinovich–Fabrikant model tr_TR
dc.title Heuristic Computing With Active Set Method for the Nonlinear Rabinovich–fabrikant Model en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
3.55 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: