Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Heuristic computing with active set method for the nonlinear Rabinovich–Fabrikant model

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorE Alhazmi, Sharifah
dc.contributor.authorBen Said, Salem
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-06-05T10:59:37Z
dc.date.available2024-06-05T10:59:37Z
dc.date.issued2023
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe current study shows a reliable stochastic computing heuristic approach for solving the nonlinear Rabinovich-Fabrikant model. This nonlinear model contains three ordinary differential equations. The process of stochastic computing artificial neural networks (ANNs) has been applied along with the competences of global heuristic genetic algorithm (GA) and local search active set (AS) methodologies, i.e., ANNs-GAAS. The construction of merit function is performed through the differential Rabinovich-Fabrikant model. The results obtained through this scheme are simple, reliable, and accurate, which have been calculated to optimize the merit function by using the GAAS method. The comparison of the obtained results through this scheme and the conventional reference solutions strengthens the correctness of the proposed method. Ten numbers of neurons along with the log-sigmoid transfer function in the neural network structure have been used to solve the model. The values of the absolute error are performed around 10−07 and 10−08 for each class of the Rabinovich-Fabrikant model. Moreover, the reliability of the ANNs-GAAS approach is observed by using different statistical approaches for solving the Rabinovich-Fabrikant model.en_US
dc.description.publishedMonth11
dc.identifier.citationSabir, Zulqurnain...et al. "Heuristic computing with active set method for the nonlinear Rabinovich–Fabrikant model", Heliyon, Vol. 9, No. 11.en_US
dc.identifier.doi10.1016/j.heliyon.2023.e22030
dc.identifier.issn2405-8440
dc.identifier.issue11en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/8470
dc.identifier.volume9en_US
dc.language.isoenen_US
dc.relation.ispartofHeliyonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectActive Set Methoden_US
dc.subjectArtificial Neural Networksen_US
dc.subjectGenetic Algorithmen_US
dc.subjectNumerical Solutionsen_US
dc.subjectRabinovich-Fabrikanten_US
dc.titleHeuristic computing with active set method for the nonlinear Rabinovich–Fabrikant modeltr_TR
dc.titleHeuristic Computing With Active Set Method for the Nonlinear Rabinovich–fabrikant Modelen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
3.55 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: