Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical solutions of the Wolbachia invasive model using Levenberg-Marquardt backpropagation neural network technique

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorJaveed, Shumaila
dc.contributor.authorAhmed, Iftikhar
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorBilal Riaz, Muhammad
dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-01-17T13:29:27Z
dc.date.available2024-01-17T13:29:27Z
dc.date.issued2023
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe current study presents the numerical solutions of the Wolbachia invasive model (WIM) using the neural network Levenberg-Marquardt (NN-LM) backpropagation technique. The dynamics of the Wolbachia model is categorized into four classes, namely Wolbachia-uninfected aquatic mosquitoes (An∗), Wolbachia-uninfected adult female mosquitoes (Fn∗), Wolbachia-infected aquatic mosquitoes (Aw∗), and Wolbachia-infected adult female mosquitoes (Fw∗). A reference dataset for the proposed NN-LM technique is created by solving the Wolbachia model using the Runge-Kutta (RK) numerical method. The reference dataset is used for validation, training, and testing of the proposed NN-LM technique for three different cases. The obtained numerical results from the proposed neural network technique are compared with the results obtained from the RK method for accuracy, correctness, and efficiency of the designed methodology. The validation of the proposed solution methodology is checked through the mean square error (MSE), error histograms, error plots, regression plots, and fitness plots.en_US
dc.description.publishedMonth7
dc.identifier.citationFaiz, Zeshan;...et.al. (2023). "Numerical solutions of the Wolbachia invasive model using Levenberg-Marquardt backpropagation neural network technique", Results in Physics, Vol.50.en_US
dc.identifier.doi10.1016/j.rinp.2023.106602
dc.identifier.issn22113797
dc.identifier.urihttps://hdl.handle.net/20.500.12416/6905
dc.identifier.volume50en_US
dc.language.isoenen_US
dc.relation.ispartofResults in Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectMathematical Modelen_US
dc.subjectMean Square Erroren_US
dc.subjectNeural Networken_US
dc.subjectReference Solutionsen_US
dc.subjectWolbachiaen_US
dc.titleNumerical solutions of the Wolbachia invasive model using Levenberg-Marquardt backpropagation neural network techniquetr_TR
dc.titleNumerical Solutions of the Wolbachia Invasive Model Using Levenberg-Marquardt Backpropagation Neural Network Techniqueen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
12.71 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: