On the complementary nabla Pachpatte type dynamic inequalities via convexity
dc.authorid | Kayar, Zeynep/0000-0002-8309-7930 | |
dc.authorscopusid | 55695817800 | |
dc.authorscopusid | 7801347693 | |
dc.contributor.author | Kayar, Zeynep | |
dc.contributor.author | Kaymakçalan, Billur | |
dc.contributor.author | Kaymakcalan, Billur | |
dc.contributor.authorID | 109448 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-06-13T12:29:32Z | |
dc.date.available | 2024-06-13T12:29:32Z | |
dc.date.issued | 2024 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Kayar, Zeynep] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkiye; [Kaymakcalan, Billur] Cankaya Univ, Dept Math, TR-06810 Ankara, Turkiye | en_US |
dc.description | Kayar, Zeynep/0000-0002-8309-7930 | en_US |
dc.description.abstract | Pachpatte type inequalities are convex generalizations of the well-known Hardy-Copson type inequalities. As Hardy-Copson type inequalities and convexity have numerous applications in pure and applied mathematics, combining these concepts will lead to more significant applications that can be used to develop certain branches of mathematics such as fuctional analysis, operator theory, optimization and ordinary/partial differential equations. We extend classical nabla Pachpatte type dynamic inequalities by changing the interval of the exponent delta from delta > 1 to delta < 0. Our results not only complement the classical nabla Pachpatte type inequalities but also generalize complementary nabla Hardy-Copson type inequalities. As the case of delta < 0 has not been previously examined, these complementary inequalities represent a novelty in the nabla time scale calculus, specialized cases in continuous and discrete scenarios, and in the dual outcomes derived in the delta time scale calculus. | en_US |
dc.description.publishedMonth | 1 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Kayar, Zeynep; Kaymakçalan, Billur (2024). "On the complementary nabla Pachpatte type dynamic inequalities via convexity", Kuwait Journal of Science, Vol. 51, No. 1. | en_US |
dc.identifier.doi | 10.1016/j.kjs.2023.09.004 | |
dc.identifier.issn | 2307-4108 | |
dc.identifier.issn | 2307-4116 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85173036243 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.kjs.2023.09.004 | |
dc.identifier.volume | 51 | en_US |
dc.identifier.wos | WOS:001186860300001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.subject | Time Scale Calculus | en_US |
dc.subject | Hardy'S Inequality | en_US |
dc.subject | Copson'S Inequality | en_US |
dc.subject | Pachpatte'S Inequality | en_US |
dc.subject | Convexity | en_US |
dc.title | On the complementary nabla Pachpatte type dynamic inequalities via convexity | tr_TR |
dc.title | On the Complementary Nabla Pachpatte Type Dynamic Inequalities Via Convexity | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0a88c582-7df0-41a2-8310-4ef6b993616b | |
relation.isAuthorOfPublication.latestForDiscovery | 0a88c582-7df0-41a2-8310-4ef6b993616b | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |