Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Finite Element Method-Based Optimisation of Magnetic Coupler Design for Safe Operation of Hybrid Uavs

dc.contributor.author Iskender, Ires
dc.contributor.author Navruz, Tugba Selcen
dc.contributor.author Arslan, Sami
dc.contributor.authorID 133746 tr_TR
dc.contributor.other 06.03. Elektrik-Elektronik Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-12-18T08:22:46Z
dc.date.accessioned 2025-09-18T13:26:58Z
dc.date.available 2023-12-18T08:22:46Z
dc.date.available 2025-09-18T13:26:58Z
dc.date.issued 2023
dc.description Arslan, Sami/0000-0002-1386-943X en_US
dc.description.abstract The integration of compact concepts and advances in permanent-magnet technology improve the safety, usability, endurance, and simplicity of unmanned aerial vehicles (UAVs) while also providing long-term operation without maintenance and larger air gap use. These developments have revealed the demand for the use of magnetic couplers to magnetically isolate aircraft engines and starter-generator shafts, allowing contactless torque transmission. This paper explores the design aspects of an active cylindrical-type magnetic coupler based on finite element analyses to achieve an optimum model for hybrid UAVs using a piston engine. The novel model is parameterised in Ansys Maxwell for optimetric solutions, including magnetostatics and transients. The criteria of material selection, coupler types, and topologies are discussed. The Torque-Speed bench is set up for dynamic and static tests. The highest torque density is obtained in the 10-pole configuration with an embrace of 0.98. In addition, the loss of synchronisation caused by the piston engine shaft locking and misalignment in the case of bearing problems is also examined. The magnetic coupler efficiency is above 94% at the maximum speed. The error margin of the numerical simulations is 8% for the Maxwell 2D and 4.5% for 3D. Correction coefficients of 1.2 for the Maxwell 2D and 1.1 for 3D are proposed. en_US
dc.description.publishedMonth 2
dc.identifier.citation Arslan, S.; İskender, İ.; Navruz, TS. (2023). "Finite Element Method-Based Optimisation of Magnetic Coupler Design for Safe Operation of Hybrid UAVs", Aerospace, Vol.10, No.2. en_US
dc.identifier.doi 10.3390/aerospace10020140
dc.identifier.issn 2226-4310
dc.identifier.scopus 2-s2.0-85149024239
dc.identifier.uri https://doi.org/10.3390/aerospace10020140
dc.identifier.uri https://hdl.handle.net/123456789/12774
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Active Cylindrical Coupler en_US
dc.subject Correction Coefficient en_US
dc.subject Finite Element Method en_US
dc.subject Hybrid Uav en_US
dc.subject Magnetic Coupler en_US
dc.subject Magnetic Coupling en_US
dc.subject Noncontact Torque Transmission en_US
dc.title Finite Element Method-Based Optimisation of Magnetic Coupler Design for Safe Operation of Hybrid Uavs en_US
dc.title Finite Element Method-Based Optimisation of Magnetic Coupler Design for Safe Operation of Hybrid UAVs tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Arslan, Sami/0000-0002-1386-943X
gdc.author.institutional İskender, İres
gdc.author.scopusid 57193738532
gdc.author.scopusid 15019302900
gdc.author.scopusid 23036276600
gdc.author.wosid Iskender, Ires/Aak-8084-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Arslan, Sami] Gazi Univ, Grad Sch Nat & Appl Sci, Dept Elect & Elect Engn, TR-06500 Ankara, Turkiye; [Iskender, Ires] Cankaya Univ, Dept Elect Elect Engn, TR-06790 Ankara, Turkiye; [Navruz, Tugba Selcen] Gazi Univ, Dept Elect & Elect Engn, TR-06560 Ankara, Turkiye en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4319008766
gdc.identifier.wos WOS:000938034000001
gdc.openalex.fwci 0.3317678
gdc.openalex.normalizedpercentile 0.54
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.plumx.newscount 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication 2219cbd5-9b30-48e0-b360-4bc56c99320f
relation.isAuthorOfPublication.latestForDiscovery 2219cbd5-9b30-48e0-b360-4bc56c99320f
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery a8b0a996-7c01-41a1-85be-843ba585ef45

Files