Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new analytical method to simulate the mutual impact of space-time memory indices embedded in (1+2)-physical models

dc.authorid Alquran, Marwan/0000-0003-3901-9270
dc.authorscopusid 57189531571
dc.authorscopusid 57937334500
dc.authorscopusid 36679871400
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Alquran, Marwan/Iup-3798-2023
dc.authorwosid Jaradat, Imad/Gpk-2701-2022
dc.contributor.author Makhadmih, Mohammad
dc.contributor.author Jaradat, Imad
dc.contributor.author Alquran, Marwan
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-02-09T11:41:03Z
dc.date.available 2024-02-09T11:41:03Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Makhadmih, Mohammad; Jaradat, Imad; Alquran, Marwan] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania en_US
dc.description Alquran, Marwan/0000-0003-3901-9270 en_US
dc.description.abstract In the present article, we geometrically and analytically examine the mutual impact of space-time Caputo derivatives embedded in (1 + 2)-physical models. This has been accomplished by integrating the residual power series method (RPSM) with a new trivariate fractional power series representation that encompasses spatial and temporal Caputo derivative parameters. Theoretically, some results regarding the convergence and the error for the proposed adaptation have been established by virtue of the Riemann-Liouville fractional integral. Practically, the embedding of Schrodinger, telegraph, and Burgers' equations into higher fractional space has been considered, and their solutions furnished by means of a rapidly convergent series that has ultimately a closed-form fractional function. The graphical analysis of the obtained solutions has shown that the solutions possess a homotopy mapping characteristic, in a topological sense, to reach the integer case solution where the Caputo derivative parameters behave similarly to the homotopy parameters. Altogether, the proposed technique exhibits a high accuracy and high rate of convergence. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.citation Makhadmih, M.;...et.al. (2022). "A new analytical method to simulate the mutual impact of space-time memory indices embedded in (1+2)-physical models", Nonlinear Engineering, Vol.11, No.1, pp.522-538. en_US
dc.identifier.doi 10.1515/nleng-2022-0244
dc.identifier.endpage 538 en_US
dc.identifier.issn 2192-8010
dc.identifier.issn 2192-8029
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85140402861
dc.identifier.scopusquality Q2
dc.identifier.startpage 522 en_US
dc.identifier.uri https://doi.org/10.1515/nleng-2022-0244
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:000865548600001
dc.identifier.wosquality N/A
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Caputo Derivative en_US
dc.subject Time-Space Partial Differential Equations en_US
dc.subject Fractional Rpsm en_US
dc.title A new analytical method to simulate the mutual impact of space-time memory indices embedded in (1+2)-physical models tr_TR
dc.title A New Analytical Method To Simulate the Mutual Impact of Space-Time Memory Indices Embedded in (1 en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: