Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative

dc.authorid Hashemi, Mir Sajjad/0000-0002-5529-3125
dc.authorscopusid 57699568200
dc.authorscopusid 15622742900
dc.authorscopusid 56382731500
dc.authorscopusid 57213314244
dc.authorwosid Riaz, Muhammad/Aba-9824-2021
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Hashemi, Mir Sajjad/M-4081-2015
dc.contributor.author Jarad, Fahd
dc.contributor.author Jarad, Fahd
dc.contributor.author Hashemi, Mir Sajjad
dc.contributor.author Riaz, Muhammad Bilal
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-02-14T07:49:50Z
dc.date.available 2024-02-14T07:49:50Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Xia, Fang-Li] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Hashemi, Mir Sajjad] Univ Bonab, Basic Sci Fac, Dept Math, POB 55513-95133, Bonab, Iran; [Riaz, Muhammad Bilal] Univ Management & Technol Lahore, Dept Math, Lahore 54770, Pakistan; [Riaz, Muhammad Bilal] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego St, PL-90924 Lodz, Poland; [Riaz, Muhammad Bilal] Univ Free State, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa en_US
dc.description Hashemi, Mir Sajjad/0000-0002-5529-3125 en_US
dc.description.abstract In this work, we consider the generalized nonlinear dispersive mK(m,n) equation with a recently defined local derivative in the temporal direction. Different types of exact solutions are extracted by Nucci's reduction technique. Combinations of the exponential, trigonometric, hyperbolic, and logarithmic functions constitute the exact solutions especially of the soliton and Kink-type soliton solutions. The influence of the derivative order alpha, for the obtained results, is graphically investigated. In some cases, exact solutions are achieved for arbitrary values of n and m, which can be interesting from the mathematical point of view. We provided 2-D and 3-D figures to illustrate the reported solutions. Computational results indicate that the reduction technique is superior to some other methods used in the literature to solve the same equations. To the best of the author's knowledge, this method is not applied for differential equations with the recently hyperbolic local derivative. en_US
dc.description.publishedMonth 7
dc.description.sponsorship Polish National Science Centre under the grant OPUS 18 [2019/35/B/ST8/00980] en_US
dc.description.sponsorship All authors have read and agreed to the published version of the manuscript. This work has been supported by the Polish National Science Centre under the grant OPUS 18 No. 2019/35/B/ST8/00980. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Xia, FL.;...et.al. (2022). "A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative", Results In Physıcs, Vol.38. en_US
dc.identifier.doi 10.1016/j.rinp.2022.105512
dc.identifier.issn 2211-3797
dc.identifier.scopus 2-s2.0-85130383288
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.rinp.2022.105512
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:000832759700001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 50
dc.subject Nucci'S Reduction Method en_US
dc.subject Local Derivative en_US
dc.subject Generalized Nonlinear Dispersive Mk(M,N) Equation en_US
dc.title A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative tr_TR
dc.title A Reduction Technique To Solve the Generalized Nonlinear Dispersive Mk(M,n) Equation With New Local Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 45
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: