A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative
dc.authorid | Hashemi, Mir Sajjad/0000-0002-5529-3125 | |
dc.authorscopusid | 57699568200 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 56382731500 | |
dc.authorscopusid | 57213314244 | |
dc.authorwosid | Riaz, Muhammad/Aba-9824-2021 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Hashemi, Mir Sajjad/M-4081-2015 | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Hashemi, Mir Sajjad | |
dc.contributor.author | Riaz, Muhammad Bilal | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-02-14T07:49:50Z | |
dc.date.available | 2024-02-14T07:49:50Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Xia, Fang-Li] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Hashemi, Mir Sajjad] Univ Bonab, Basic Sci Fac, Dept Math, POB 55513-95133, Bonab, Iran; [Riaz, Muhammad Bilal] Univ Management & Technol Lahore, Dept Math, Lahore 54770, Pakistan; [Riaz, Muhammad Bilal] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego St, PL-90924 Lodz, Poland; [Riaz, Muhammad Bilal] Univ Free State, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa | en_US |
dc.description | Hashemi, Mir Sajjad/0000-0002-5529-3125 | en_US |
dc.description.abstract | In this work, we consider the generalized nonlinear dispersive mK(m,n) equation with a recently defined local derivative in the temporal direction. Different types of exact solutions are extracted by Nucci's reduction technique. Combinations of the exponential, trigonometric, hyperbolic, and logarithmic functions constitute the exact solutions especially of the soliton and Kink-type soliton solutions. The influence of the derivative order alpha, for the obtained results, is graphically investigated. In some cases, exact solutions are achieved for arbitrary values of n and m, which can be interesting from the mathematical point of view. We provided 2-D and 3-D figures to illustrate the reported solutions. Computational results indicate that the reduction technique is superior to some other methods used in the literature to solve the same equations. To the best of the author's knowledge, this method is not applied for differential equations with the recently hyperbolic local derivative. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.sponsorship | Polish National Science Centre under the grant OPUS 18 [2019/35/B/ST8/00980] | en_US |
dc.description.sponsorship | All authors have read and agreed to the published version of the manuscript. This work has been supported by the Polish National Science Centre under the grant OPUS 18 No. 2019/35/B/ST8/00980. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Xia, FL.;...et.al. (2022). "A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative", Results In Physıcs, Vol.38. | en_US |
dc.identifier.doi | 10.1016/j.rinp.2022.105512 | |
dc.identifier.issn | 2211-3797 | |
dc.identifier.scopus | 2-s2.0-85130383288 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.rinp.2022.105512 | |
dc.identifier.volume | 38 | en_US |
dc.identifier.wos | WOS:000832759700001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 50 | |
dc.subject | Nucci'S Reduction Method | en_US |
dc.subject | Local Derivative | en_US |
dc.subject | Generalized Nonlinear Dispersive Mk(M,N) Equation | en_US |
dc.title | A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative | tr_TR |
dc.title | A Reduction Technique To Solve the Generalized Nonlinear Dispersive Mk(M,n) Equation With New Local Derivative | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 45 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |