A new numerical technique for local fractional diffusion equation in fractal heat transfer
dc.authorid | Yang, Xiao-Jun/0000-0003-0009-4599 | |
dc.authorid | Tenreiro Machado, J. A./0000-0003-4274-4879 | |
dc.authorwosid | Yang, Xiao-Jun/E-8311-2011 | |
dc.authorwosid | Gao, Feng/Grx-5768-2022 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Tenreiro Machado, J. A./M-2173-2013 | |
dc.contributor.author | Yang, Xiao-Jun | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Tenreiro Machado, J. A. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Gao, Feng | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-04-15T20:58:36Z | |
dc.date.available | 2020-04-15T20:58:36Z | |
dc.date.issued | 2016 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Yang, Xiao-Jun; Gao, Feng] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China; [Yang, Xiao-Jun; Gao, Feng] China Univ Min & Technol, Sch Mech & Civil Engn, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China; [Tenreiro Machado, J. A.] Polytech Porto, Dept Elect Engn, Inst Engn, Rua Dr Antonio Bernardino de Almeida, P-4249015 Oporto, Portugal; [Baleanu, Dumitru] Cankya Univ, Dept Math, Ogretmenler Cad 14, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
dc.description | Yang, Xiao-Jun/0000-0003-0009-4599; Tenreiro Machado, J. A./0000-0003-4274-4879 | en_US |
dc.description.abstract | In this paper, a new numerical approach, embedding the differential transform (DT) and Laplace transform (LT), is firstly proposed. It is considered in the local fractional derivative operator for obtaining the non-differential solution for diffusion equation in fractal heat transfer. (C) 2016 All rights reserved. | en_US |
dc.description.sponsorship | State Key Research Development Program of China [2016YFC0600705] | en_US |
dc.description.sponsorship | This work is supported by the State Key Research Development Program of China (Grant No. 2016YFC0600705). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Yang, Xiao-Jun...et al. (2016). "A new numerical technique for local fractional diffusion equation in fractal heat transfer", Journal of Nonlinear Sciences and Applications, Vol. 9, No. 10, pp. 5621-5628. | en_US |
dc.identifier.doi | 10.22436/jnsa.009.10.09 | |
dc.identifier.endpage | 5628 | en_US |
dc.identifier.issn | 2008-1898 | |
dc.identifier.issn | 2008-1901 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 5621 | en_US |
dc.identifier.uri | https://doi.org/10.22436/jnsa.009.10.09 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000392094500009 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | int Scientific Research Publications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Numerical Solution | en_US |
dc.subject | Diffusion Equation | en_US |
dc.subject | Differential Transform | en_US |
dc.subject | Laplace Transform | en_US |
dc.subject | Fractal Heat Transfer | en_US |
dc.subject | Local Fractional Derivative | en_US |
dc.title | A new numerical technique for local fractional diffusion equation in fractal heat transfer | tr_TR |
dc.title | A New Numerical Technique for Local Fractional Diffusion Equation in Fractal Heat Transfer | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 31 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: