Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Identifying criminal organizations from their social network structures

dc.contributor.authorÇınar, Muhammet Serkan
dc.contributor.authorGenç, Burkay
dc.contributor.authorSever, Hayri
dc.contributor.authorID11916tr_TR
dc.date.accessioned2020-01-29T12:07:48Z
dc.date.available2020-01-29T12:07:48Z
dc.date.issued2019
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractIdentification of criminal structures within very large social networks is an essential security feat. By identifying such structures, it may be possible to track, neutralize, and terminate the corresponding criminal organizations before they act. We evaluate the effectiveness of three different methods for classifying an unknown network as terrorist, cocaine, or noncriminal. We consider three methods for the identification of network types: evaluating common social network analysis metrics, modeling with a decision tree, and network motif frequency analysis. The empirical results show that these three methods can provide significant improvements in distinguishing all three network types. We show that these methods are viable enough to be used as supporting evidence by security forces in their fight against criminal organizations operating on social networks.en_US
dc.identifier.citationCinar, Muhammet Serkan; Genc, Burkay; Sever, Hayri, "Identifying criminal organizations from their social network structures", Identifying criminal organizations from their social network structures, Vol. 27, No. 1, pp. 421-436, (2019).en_US
dc.identifier.doi10.3906/elk-1806-52
dc.identifier.endpage436en_US
dc.identifier.issn1300-0632
dc.identifier.issue1en_US
dc.identifier.startpage421en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2380
dc.identifier.volume27en_US
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technical Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCriminal Networksen_US
dc.subjectIdentificationen_US
dc.subjectDecision Treeen_US
dc.subjectMotif Analysisen_US
dc.subjectMachine Learningen_US
dc.titleIdentifying criminal organizations from their social network structurestr_TR
dc.titleIdentifying Criminal Organizations From Their Social Network Structuresen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sever, Hayri.pdf
Size:
316.99 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: