Quaternion fourier integral operators for spaces of generalized quaternions
dc.authorid | Al-Omari, Shrideh/0000-0001-8955-5552 | |
dc.authorscopusid | 14828685700 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Al-Omari, Shrideh/E-5065-2017 | |
dc.contributor.author | Al-Omari, Shrideh K. Q. | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-03-18T13:48:31Z | |
dc.date.available | 2020-03-18T13:48:31Z | |
dc.date.issued | 2018 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Al-Omari, Shrideh K. Q.] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman 11134, Jordan; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey | en_US |
dc.description | Al-Omari, Shrideh/0000-0001-8955-5552 | en_US |
dc.description.abstract | This article aims to discuss a class of quaternion Fourier integral operators on certain set of generalized functions, leading to a method of discussing various integral operators on various spaces of generalized functions. By employing a quaternion Fourier integral operator on points closed to the origin, we introduce convolutions and approximating identities associated with the Fourier convolution product and derive classical and generalized convolution theorems. Working on such identities, we establish quaternion and ultraquaternion spaces of generalized functions, known as Boehmians, which are more general than those existed on literature. Further, we obtain some characteristics of the quaternion Fourier integral in a quaternion sense. Moreover, we derive continuous embeddings between the classical and generalized quaternion spaces and discuss some inversion formula as well. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Al-Omari, Shrideh K. Q.; Baleanu, D., "Quaternion fourier integral operators for spaces of generalized quaternions", Mathematical Methods in the Applied Sciences, Vol. 41, No. 18, pp. 9477, 9484, (2018). | en_US |
dc.identifier.doi | 10.1002/mma.5304 | |
dc.identifier.endpage | 9484 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 18 | en_US |
dc.identifier.scopus | 2-s2.0-85055290679 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 9477 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.5304 | |
dc.identifier.volume | 41 | en_US |
dc.identifier.wos | WOS:000452611500081 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 15 | |
dc.subject | Boehmian Space | en_US |
dc.subject | Generalized Quaterion Space | en_US |
dc.subject | Quaternion | en_US |
dc.subject | Quaternion Fourier | en_US |
dc.title | Quaternion fourier integral operators for spaces of generalized quaternions | tr_TR |
dc.title | Quaternion Fourier Integral Operators for Spaces of Generalized Quaternions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 11 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: