Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Quaternion fourier integral operators for spaces of generalized quaternions

dc.authorid Al-Omari, Shrideh/0000-0001-8955-5552
dc.authorscopusid 14828685700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Al-Omari, Shrideh/E-5065-2017
dc.contributor.author Al-Omari, Shrideh K. Q.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-03-18T13:48:31Z
dc.date.available 2020-03-18T13:48:31Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Al-Omari, Shrideh K. Q.] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman 11134, Jordan; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey en_US
dc.description Al-Omari, Shrideh/0000-0001-8955-5552 en_US
dc.description.abstract This article aims to discuss a class of quaternion Fourier integral operators on certain set of generalized functions, leading to a method of discussing various integral operators on various spaces of generalized functions. By employing a quaternion Fourier integral operator on points closed to the origin, we introduce convolutions and approximating identities associated with the Fourier convolution product and derive classical and generalized convolution theorems. Working on such identities, we establish quaternion and ultraquaternion spaces of generalized functions, known as Boehmians, which are more general than those existed on literature. Further, we obtain some characteristics of the quaternion Fourier integral in a quaternion sense. Moreover, we derive continuous embeddings between the classical and generalized quaternion spaces and discuss some inversion formula as well. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Al-Omari, Shrideh K. Q.; Baleanu, D., "Quaternion fourier integral operators for spaces of generalized quaternions", Mathematical Methods in the Applied Sciences, Vol. 41, No. 18, pp. 9477, 9484, (2018). en_US
dc.identifier.doi 10.1002/mma.5304
dc.identifier.endpage 9484 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 18 en_US
dc.identifier.scopus 2-s2.0-85055290679
dc.identifier.scopusquality Q1
dc.identifier.startpage 9477 en_US
dc.identifier.uri https://doi.org/10.1002/mma.5304
dc.identifier.volume 41 en_US
dc.identifier.wos WOS:000452611500081
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 15
dc.subject Boehmian Space en_US
dc.subject Generalized Quaterion Space en_US
dc.subject Quaternion en_US
dc.subject Quaternion Fourier en_US
dc.title Quaternion fourier integral operators for spaces of generalized quaternions tr_TR
dc.title Quaternion Fourier Integral Operators for Spaces of Generalized Quaternions en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: