Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On a more general fractional integration by parts formulae and applications

dc.authorscopusid 6508051762
dc.authorscopusid 55659450400
dc.authorscopusid 55389111400
dc.authorscopusid 15622742900
dc.authorwosid Gómez Aguilar, José/I-7027-2019
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Abdeljawad, Thabet/T-8298-2018
dc.authorwosid Atangana, Abdon/Aae-4779-2021
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Atangana, Abdon
dc.contributor.author Jarad, Fahd
dc.contributor.author Gomez-Aguilar, J. F.
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-10-04T13:02:14Z
dc.date.available 2022-10-04T13:02:14Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia; [Atangana, Abdon] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa; [Gomez-Aguilar, J. F.] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkey en_US
dc.description.abstract The integration by part comes from the product rule of classical differentiation and integration. The concept was adapted in fractional differential and integration and has several applications in control theory. However, the formulation in fractional calculus is the classical integral of a fractional derivative of a product of a fractional derivative of a given function f and a function g. We argue that, this formulation could be done using only fractional operators: thus, we develop fractional integration by parts for fractional integrals, Riemann-Liouville, Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. We allow the left and right fractional integrals of order alpha > 0 to act on the integrated terms instead of the usual integral and then make use of the fractional type Leibniz rules to formulate the integration by parts by means of new generalized type fractional operators with binomial coefficients defined for analytic functions. In the case alpha = 1, our formulae of fractional integration by parts results in previously obtained integration by parts in fractional calculus. The two disciplines or branches of mathematics are built differently, while classical differentiation is built with the concept of rate of change of a given function, a fractional differential operator is a convolution. (C) 2019 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 12
dc.description.sponsorship Prince Sultan University, Saudi Arabia [RG-DES-2017-01-17]; CONACyT, Mexico: catedras CONACyT para jovenes investigadores 2014; SNI-CONACyT, Mexico en_US
dc.description.sponsorship The first author would like to thank Prince Sultan University, Saudi Arabia for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. Jose Francisco Gomez Aguilar acknowledges the support provided by CONACyT, Mexico: catedras CONACyT para jovenes investigadores 2014 and SNI-CONACyT, Mexico. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Abdeljawad, Thabet...et al. (2019). "On a more general fractional integration by parts formulae and applications", Physica A: Statistical Mechanics and its Applications, Vol. 536. en_US
dc.identifier.doi 10.1016/j.physa.2019.122494
dc.identifier.issn 0378-4371
dc.identifier.issn 1873-2119
dc.identifier.scopus 2-s2.0-85071727837
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.physa.2019.122494
dc.identifier.volume 536 en_US
dc.identifier.wos WOS:000500034900010
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 29
dc.subject Fractional Calculus en_US
dc.subject New Integration By Parts en_US
dc.subject Convolution en_US
dc.subject Binomial Coefficients en_US
dc.subject Fractional Derivatives en_US
dc.title On a more general fractional integration by parts formulae and applications tr_TR
dc.title On a More General Fractional Integration by Parts Formulae and Applications en_US
dc.type Article en_US
dc.wos.citedbyCount 24
dspace.entity.type Publication
relation.isAuthorOfPublication ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: