On a more general fractional integration by parts formulae and applications
dc.authorscopusid | 6508051762 | |
dc.authorscopusid | 55659450400 | |
dc.authorscopusid | 55389111400 | |
dc.authorscopusid | 15622742900 | |
dc.authorwosid | Gómez Aguilar, José/I-7027-2019 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Abdeljawad, Thabet/T-8298-2018 | |
dc.authorwosid | Atangana, Abdon/Aae-4779-2021 | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Atangana, Abdon | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Gomez-Aguilar, J. F. | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-10-04T13:02:14Z | |
dc.date.available | 2022-10-04T13:02:14Z | |
dc.date.issued | 2019 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia; [Atangana, Abdon] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa; [Gomez-Aguilar, J. F.] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkey | en_US |
dc.description.abstract | The integration by part comes from the product rule of classical differentiation and integration. The concept was adapted in fractional differential and integration and has several applications in control theory. However, the formulation in fractional calculus is the classical integral of a fractional derivative of a product of a fractional derivative of a given function f and a function g. We argue that, this formulation could be done using only fractional operators: thus, we develop fractional integration by parts for fractional integrals, Riemann-Liouville, Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. We allow the left and right fractional integrals of order alpha > 0 to act on the integrated terms instead of the usual integral and then make use of the fractional type Leibniz rules to formulate the integration by parts by means of new generalized type fractional operators with binomial coefficients defined for analytic functions. In the case alpha = 1, our formulae of fractional integration by parts results in previously obtained integration by parts in fractional calculus. The two disciplines or branches of mathematics are built differently, while classical differentiation is built with the concept of rate of change of a given function, a fractional differential operator is a convolution. (C) 2019 Elsevier B.V. All rights reserved. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.sponsorship | Prince Sultan University, Saudi Arabia [RG-DES-2017-01-17]; CONACyT, Mexico: catedras CONACyT para jovenes investigadores 2014; SNI-CONACyT, Mexico | en_US |
dc.description.sponsorship | The first author would like to thank Prince Sultan University, Saudi Arabia for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. Jose Francisco Gomez Aguilar acknowledges the support provided by CONACyT, Mexico: catedras CONACyT para jovenes investigadores 2014 and SNI-CONACyT, Mexico. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Abdeljawad, Thabet...et al. (2019). "On a more general fractional integration by parts formulae and applications", Physica A: Statistical Mechanics and its Applications, Vol. 536. | en_US |
dc.identifier.doi | 10.1016/j.physa.2019.122494 | |
dc.identifier.issn | 0378-4371 | |
dc.identifier.issn | 1873-2119 | |
dc.identifier.scopus | 2-s2.0-85071727837 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.physa.2019.122494 | |
dc.identifier.volume | 536 | en_US |
dc.identifier.wos | WOS:000500034900010 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 29 | |
dc.subject | Fractional Calculus | en_US |
dc.subject | New Integration By Parts | en_US |
dc.subject | Convolution | en_US |
dc.subject | Binomial Coefficients | en_US |
dc.subject | Fractional Derivatives | en_US |
dc.title | On a more general fractional integration by parts formulae and applications | tr_TR |
dc.title | On a More General Fractional Integration by Parts Formulae and Applications | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 24 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: