On Non-Homogeneous Singular Systems of Fractional Nabla Difference Equations
dc.authorscopusid | 55441482800 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 6603758768 | |
dc.authorwosid | Dassios, Ioannis/G-8112-2011 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Dassios, Ioannis K. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru I. | |
dc.contributor.author | Kalogeropoulos, Grigoris I. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2020-05-02T15:41:55Z | |
dc.date.available | 2020-05-02T15:41:55Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Dassios, Ioannis K.] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland; [Dassios, Ioannis K.] Univ Edinburgh, Maxwell Inst, Edinburgh EH9 3JZ, Midlothian, Scotland; [Baleanu, Dumitru I.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Baleanu, Dumitru I.] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru I.] Inst Space Sci, Magurele, Romania; [Kalogeropoulos, Grigoris I.] Univ Athens, Dept Math, Athens, Greece | en_US |
dc.description.abstract | In this article we study the initial value problem of a class of non-homogeneous singular systems of fractional nabla difference equations whose coefficients are constant matrices. By taking into consideration the cases that the matrices are square with the leading coefficient singular, non-square and square with a matrix pencil which has an identically zero determinant, we provide necessary and sufficient conditions for the existence and uniqueness of solutions. More analytically we study the conditions under which the system has unique, infinite and no solutions. Furthermore, we provide a formula for the case of the unique solution. Finally, numerical examples are given to justify our theory. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved. | en_US |
dc.description.publishedMonth | 1 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, Dumitru; Dassios, Ioannis K.; Kalogeropoulos, Grigoris I., "On Non-Homogeneous Singular Systems of Fractional Nabla Difference Equations", Applied Mathematics and Computation, 227, pp. 112-131, (2014). | en_US |
dc.identifier.doi | 10.1016/j.amc.2013.10.090 | |
dc.identifier.endpage | 131 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.scopus | 2-s2.0-84889251084 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 112 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2013.10.090 | |
dc.identifier.volume | 227 | en_US |
dc.identifier.wos | WOS:000331496400011 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Singular Systems | en_US |
dc.subject | Fractional Calculus | en_US |
dc.subject | Nabla Operator | en_US |
dc.subject | Difference Equations | en_US |
dc.subject | Linear | en_US |
dc.subject | Discrete Time System | en_US |
dc.title | On Non-Homogeneous Singular Systems of Fractional Nabla Difference Equations | tr_TR |
dc.title | On Non-Homogeneous Singular Systems of Fractional Nabla Difference Equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: